Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Single point gradient blow-up on the boundary for a Hamilton-Jacobi equation with $ p$-Laplacian diffusion


Authors: Amal Attouchi and Philippe Souplet
Journal: Trans. Amer. Math. Soc. 369 (2017), 935-974
MSC (2010): Primary 35B40, 35B45, 35K20, 35K92; Secondary 82C24, 35F21
DOI: https://doi.org/10.1090/tran/6684
Published electronically: March 1, 2016
MathSciNet review: 3572260
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the initial-boundary value problem for the Hamilton-Jacobi equation with nonlinear diffusion $ u_t=\Delta _p u+\vert\nabla u\vert^q$ in a two-dimensional domain for $ q>p>2$. It is known that the spatial derivative of solutions may become unbounded in finite time while the solutions themselves remain bounded. We show that, for suitably localized and monotone initial data, the gradient blow-up occurs at a single point of the boundary. Such a result was known up to now only in the case of linear diffusion ($ p=2$). The analysis in the case $ p>2$ is considerably more delicate.


References [Enhancements On Off] (What's this?)

  • [1] José M. Arrieta, Anibal Rodriguez-Bernal, and Philippe Souplet, Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 (2004), no. 1, 1-15. MR 2064964 (2005b:35122)
  • [2] Amal Attouchi, Well-posedness and gradient blow-up estimate near the boundary for a Hamilton-Jacobi equation with degenerate diffusion, J. Differential Equations 253 (2012), no. 8, 2474-2492. MR 2950459, https://doi.org/10.1016/j.jde.2012.07.002
  • [3] Amal Attouchi, Boundedness of global solutions of a $ p$-Laplacian evolution equation with a nonlinear gradient term, Asymptot. Anal. 91 (2015), no. 3-4, 233-251. MR 3313457
  • [4] Guy Barles, Philippe Laurençot, and Christian Stinner, Convergence to steady states for radially symmetric solutions to a quasilinear degenerate diffusive Hamilton-Jacobi equation, Asymptot. Anal. 67 (2010), no. 3-4, 229-250. MR 2665128 (2011e:35058)
  • [5] Jean-Philippe Bartier and Philippe Laurençot, Gradient estimates for a degenerate parabolic equation with gradient absorption and applications, J. Funct. Anal. 254 (2008), no. 3, 851-878. MR 2381164 (2008k:35282), https://doi.org/10.1016/j.jfa.2007.10.012
  • [6] Avner Friedman and Bryce McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), no. 2, 425-447. MR 783924 (86j:35089), https://doi.org/10.1512/iumj.1985.34.34025
  • [7] Ataru Fujii and Masahito Ohta, Asymptotic behavior of blowup solutions of a parabolic equation with the $ p$-Laplacian, Publ. Res. Inst. Math. Sci. 32 (1996), no. 3, 503-515. MR 1409800 (97e:35091), https://doi.org/10.2977/prims/1195162854
  • [8] Victor A. Galaktionov and Sergey A. Posashkov, Single point blow-up for $ N$-dimensional quasilinear equations with gradient diffusion and source, Indiana Univ. Math. J. 40 (1991), no. 3, 1041-1060. MR 1129341 (92h:35098), https://doi.org/10.1512/iumj.1991.40.40047
  • [9] Yoshikazu Giga and Robert V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math. 42 (1989), no. 6, 845-884. MR 1003437 (90k:35034), https://doi.org/10.1002/cpa.3160420607
  • [10] Jong-Shenq Guo and Bei Hu, Blowup rate estimates for the heat equation with a nonlinear gradient source term, Discrete Contin. Dyn. Syst. 20 (2008), no. 4, 927-937. MR 2379480 (2008k:35237), https://doi.org/10.3934/dcds.2008.20.927
  • [11] M. Kardar, G. Parisi, Y. C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), 889-892.
  • [12] J. Krug and H. Spohn, Universality classes for deterministic surface growth, Phys. Rev. A (3) 38 (1988), no. 8, 4271-4283. MR 966369 (89i:82117), https://doi.org/10.1103/PhysRevA.38.4271
  • [13] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Uralceva, Linear and quasilinear equations of parabolic type, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968 (Russian). MR 0241822 (39 #3159b)
  • [14] Philippe Laurençot, Non-diffusive large time behavior for a degenerate viscous Hamilton-Jacobi equation, Comm. Partial Differential Equations 34 (2009), no. 1-3, 281-304. MR 2512862 (2010d:35206), https://doi.org/10.1080/03605300902793808
  • [15] Philippe Laurençot and Christian Stinner, Convergence to separate variables solutions for a degenerate parabolic equation with gradient source, J. Dynam. Differential Equations 24 (2012), no. 1, 29-49. MR 2890335, https://doi.org/10.1007/s10884-011-9238-x
  • [16] Philippe Laurençot and Juan Luis Vázquez, Localized non-diffusive asymptotic patterns for nonlinear parabolic equations with gradient absorption, J. Dynam. Differential Equations 19 (2007), no. 4, 985-1005. MR 2357535 (2008k:35240), https://doi.org/10.1007/s10884-007-9093-y
  • [17] Yuxiang Li and Philippe Souplet, Single-point gradient blow-up on the boundary for diffusive Hamilton-Jacobi equations in planar domains, Comm. Math. Phys. 293 (2010), no. 2, 499-517. MR 2563792 (2011a:35271), https://doi.org/10.1007/s00220-009-0936-8
  • [18] Gary M. Lieberman, Second order parabolic differential equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. MR 1465184 (98k:35003)
  • [19] Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Springer-Verlag, New York, 1984. Corrected reprint of the 1967 original. MR 762825 (86f:35034)
  • [20] Pavol Quittner and Philippe Souplet, Superlinear parabolic problems: Blow-up, global existence and steady states, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2007. MR 2346798 (2008f:35001)
  • [21] Alexander A. Samarskii, Victor A. Galaktionov, Sergei P. Kurdyumov, and Alexander P. Mikhailov, Blow-up in quasilinear parabolic equations, de Gruyter Expositions in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 1995. Translated from the 1987 Russian original by Michael Grinfeld and revised by the authors. MR 1330922 (96b:35003)
  • [22] James Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal. 43 (1971), 304-318. MR 0333220 (48 #11545)
  • [23] Philippe Souplet and Juan Luis Vázquez, Stabilization towards a singular steady state with gradient blow-up for a diffusion-convection problem, Discrete Contin. Dyn. Syst. 14 (2006), no. 1, 221-234. MR 2170311 (2006f:35139)
  • [24] Philippe Souplet and Qi S. Zhang, Global solutions of inhomogeneous Hamilton-Jacobi equations, J. Anal. Math. 99 (2006), 355-396. MR 2279557 (2007k:35243), https://doi.org/10.1007/BF02789452
  • [25] Christian Stinner, Convergence to steady states in a viscous Hamilton-Jacobi equation with degenerate diffusion, J. Differential Equations 248 (2010), no. 2, 209-228. MR 2558164 (2011a:35295), https://doi.org/10.1016/j.jde.2009.09.019
  • [26] Zhengce Zhang and Yanyan Li, Boundedness of global solutions for a heat equation with exponential gradient source, Abstr. Appl. Anal. , posted on (2012), Art. ID 398049, 10. MR 2872304 (2012k:35295), https://doi.org/10.1155/2012/398049
  • [27] Zhengce Zhang, Gradient blowup rate for a viscous Hamilton-Jacobi equation with degenerate diffusion, Arch. Math. (Basel) 100 (2013), no. 4, 361-367. MR 3044120, https://doi.org/10.1007/s00013-013-0505-4
  • [28] Jun Ning Zhao, Existence and nonexistence of solutions for $ u_t={\rm div}(\vert \nabla u\vert ^{p-2}\nabla u)+f(\nabla u, u,x,t)$, J. Math. Anal. Appl. 172 (1993), no. 1, 130-146. MR 1199500 (94b:35151), https://doi.org/10.1006/jmaa.1993.1012

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35B40, 35B45, 35K20, 35K92, 82C24, 35F21

Retrieve articles in all journals with MSC (2010): 35B40, 35B45, 35K20, 35K92, 82C24, 35F21


Additional Information

Amal Attouchi
Affiliation: Laboratoire Analyse, Géométrie et Applications, Université Paris 13, Sorbonne Paris Cité, CNRS (UMR 7539), 93430 Villetaneuse, France
Email: attouchi@math.cnrs.fr

Philippe Souplet
Affiliation: Laboratoire Analyse, Géométrie et Applications, Université Paris 13, Sorbonne Paris Cité, CNRS (UMR 7539), 93430 Villetaneuse, France
Email: souplet@math.univ-paris13.fr

DOI: https://doi.org/10.1090/tran/6684
Received by editor(s): April 19, 2014
Received by editor(s) in revised form: January 31, 2015
Published electronically: March 1, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society