Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Exponential mixing for skew products with discontinuities


Authors: Oliver Butterley and Peyman Eslami
Journal: Trans. Amer. Math. Soc. 369 (2017), 783-803
MSC (2010): Primary 37A25; Secondary 37C30, 37D50
DOI: https://doi.org/10.1090/tran/6761
Published electronically: May 6, 2016
MathSciNet review: 3572254
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the 2D skew product $ F: (x,u) \mapsto (f(x), u+\tau (x))$, where the base map $ f $ is a piecewise $ \mathscr {C}^{2}$, covering and uniformly expanding the map of the circle, and the fibre map $ \tau $ is piecewise $ \mathscr {C}^{2}$. We show that this system mixes exponentially when $ \tau $ is not cohomologous (via a Lipschitz function) to a piecewise constant.


References [Enhancements On Off] (What's this?)

  • [1] José F. Alves, Maria Carvalho, and Jorge Milhazes Freitas, Statistical stability for Hénon maps of the Benedicks-Carleson type, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), no. 2, 595-637. MR 2595193 (2011g:37052), https://doi.org/10.1016/j.anihpc.2009.09.009
  • [2] Artur Avila, Sébastien Gouëzel, and Jean-Christophe Yoccoz, Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci. 104 (2006), 143-211. MR 2264836, https://doi.org/10.1007/s10240-006-0001-5
  • [3] Viviane Baladi, Michael Benedicks, and Véronique Maume-Deschamps, Almost sure rates of mixing for i.i.d. unimodal maps, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 1, 77-126 (English, with English and French summaries). MR 1886006 (2003d:37027), https://doi.org/10.1016/S0012-9593(01)01083-7
  • [4] Viviane Baladi and Carlangelo Liverani, Exponential decay of correlations for piecewise cone hyperbolic contact flows, Comm. Math. Phys. 314 (2012), no. 3, 689-773. MR 2964773, https://doi.org/10.1007/s00220-012-1538-4
  • [5] Viviane Baladi and Brigitte Vallée, Exponential decay of correlations for surface semi-flows without finite Markov partitions, Proc. Amer. Math. Soc. 133 (2005), no. 3, 865-874 (electronic). MR 2113938 (2006d:37047), https://doi.org/10.1090/S0002-9939-04-07671-3
  • [6] Oliver Butterley, Area expanding $ \mathcal {C}^{1+\alpha }$ suspension semiflows, Comm. Math. Phys. 325 (2014), no. 2, 803-820. MR 3148102, https://doi.org/10.1007/s00220-013-1835-6
  • [7] Nikolai Chernov and Roberto Markarian, Chaotic billiards, Mathematical Surveys and Monographs, vol. 127, American Mathematical Society, Providence, RI, 2006. MR 2229799 (2007f:37050)
  • [8] N. I. Chernov, Markov approximations and decay of correlations for Anosov flows, Ann. of Math. (2) 147 (1998), no. 2, 269-324. MR 1626741 (99d:58101), https://doi.org/10.2307/121010
  • [9] Mark F. Demers and Carlangelo Liverani, Stability of statistical properties in two-dimensional piecewise hyperbolic maps, Trans. Amer. Math. Soc. 360 (2008), no. 9, 4777-4814. MR 2403704 (2009f:37021), https://doi.org/10.1090/S0002-9947-08-04464-4
  • [10] Dmitry Dolgopyat, On decay of correlations in Anosov flows, Ann. of Math. (2) 147 (1998), no. 2, 357-390. MR 1626749 (99g:58073), https://doi.org/10.2307/121012
  • [11] Dmitry Dolgopyat and Carlangelo Liverani, Energy transfer in a fast-slow Hamiltonian system, Comm. Math. Phys. 308 (2011), no. 1, 201-225. MR 2842975 (2012h:37072), https://doi.org/10.1007/s00220-011-1317-7
  • [12] P. Eslami,
    Stretched-exponential mixing for $ \mathscr {C}^{1+\alpha }$ skew products with discontinuities,
    preprint, arXiv:1405.6981, 2014.
  • [13] Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660 (93f:28001)
  • [14] Jorge Milhazes Freitas, Continuity of SRB measure and entropy for Benedicks-Carleson quadratic maps, Nonlinearity 18 (2005), no. 2, 831-854. MR 2122687 (2005m:37082), https://doi.org/10.1088/0951-7715/18/2/019
  • [15] S. Galatolo and I. Nisoli, Rigorous computation of invariant measures and fractal dimension for piecewise hyperbolic maps: 2D Lorenz like maps, To appear in Ergod. Th. & Dynam. Sys., 2014.
  • [16] Stefano Galatolo, Jérôme Rousseau, and Benoit Saussol, Skew products, quantitative recurrence, shrinking targets and decay of correlations, Ergodic Theory Dynam. Systems 35 (2015), no. 6, 1814-1845. MR 3377286, https://doi.org/10.1017/etds.2014.10
  • [17] Sébastien Gouëzel, Local limit theorem for nonuniformly partially hyperbolic skew-products and Farey sequences, Duke Math. J. 147 (2009), no. 2, 193-284. MR 2495076 (2010i:37012), https://doi.org/10.1215/00127094-2009-011
  • [18] Gerhard Keller, Stochastic stability in some chaotic dynamical systems, Monatsh. Math. 94 (1982), no. 4, 313-333. MR 685377 (84k:58130), https://doi.org/10.1007/BF01667385
  • [19] G. Keller, Markov extensions, zeta functions, and Fredholm theory for piecewise invertible dynamical systems, Trans. Amer. Math. Soc. 314 (1989), no. 2, 433-497. MR 1005524 (91c:58062), https://doi.org/10.2307/2001395
  • [20] Gerhard Keller and Carlangelo Liverani, Stability of the spectrum for transfer operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 1, 141-152. MR 1679080 (2000b:47030)
  • [21] G. Keller and C. Liverani, A spectral gap for a one-dimensional lattice of coupled piecewise expanding interval maps, Dynamics of coupled map lattices and of related spatially extended systems, Lecture Notes in Phys., vol. 671, Springer, Berlin, 2005, pp. 115-151. MR 2395729 (2009f:37022), https://doi.org/10.1007/11360810_6
  • [22] Gerhard Keller and Carlangelo Liverani, Map lattices coupled by collisions, Comm. Math. Phys. 291 (2009), no. 2, 591-597. MR 2530174 (2010g:37039), https://doi.org/10.1007/s00220-009-0835-z
  • [23] Carlangelo Liverani, Decay of correlations, Ann. of Math. (2) 142 (1995), no. 2, 239-301. MR 1343323 (96e:58090), https://doi.org/10.2307/2118636
  • [24] Carlangelo Liverani, Decay of correlations for piecewise expanding maps, J. Statist. Phys. 78 (1995), no. 3-4, 1111-1129. MR 1315241 (96d:58077), https://doi.org/10.1007/BF02183704
  • [25] Carlangelo Liverani, Rigorous numerical investigation of the statistical properties of piecewise expanding maps. A feasibility study, Nonlinearity 14 (2001), no. 3, 463-490. MR 1830903 (2002b:37128), https://doi.org/10.1088/0951-7715/14/3/303
  • [26] Carlangelo Liverani, On contact Anosov flows, Ann. of Math. (2) 159 (2004), no. 3, 1275-1312. MR 2113022 (2005k:37048), https://doi.org/10.4007/annals.2004.159.1275
  • [27] Ippei Obayashi, Exponential decay of correlations for surface semiflows with an expanding direction, J. Math. Kyoto Univ. 49 (2009), no. 2, 427-440. MR 2571851 (2011b:37004)
  • [28] Mark Pollicott, On the rate of mixing of Axiom A flows, Invent. Math. 81 (1985), no. 3, 413-426. MR 807065 (87i:58148), https://doi.org/10.1007/BF01388579
  • [29] David Ruelle, Flots qui ne mélangent pas exponentiellement, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 4, 191-193 (French, with English summary). MR 692974 (84h:58085), https://doi.org/10.1142/9789812833709_0024
  • [30] Omri Sarig, Subexponential decay of correlations, Invent. Math. 150 (2002), no. 3, 629-653. MR 1946554 (2004e:37010), https://doi.org/10.1007/s00222-002-0248-5
  • [31] Masato Tsujii, Decay of correlations in suspension semi-flows of angle-multiplying maps, Ergodic Theory Dynam. Systems 28 (2008), no. 1, 291-317. MR 2380311 (2009b:37051), https://doi.org/10.1017/S0143385707000430
  • [32] Lai-Sang Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2) 147 (1998), no. 3, 585-650. MR 1637655 (99h:58140), https://doi.org/10.2307/120960
  • [33] Lai-Sang Young, Recurrence times and rates of mixing, Israel J. Math. 110 (1999), 153-188. MR 1750438 (2001j:37062), https://doi.org/10.1007/BF02808180

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 37A25, 37C30, 37D50

Retrieve articles in all journals with MSC (2010): 37A25, 37C30, 37D50


Additional Information

Oliver Butterley
Affiliation: Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
Email: oliver.butterley@univie.ac.at

Peyman Eslami
Affiliation: Dipartimento di Matematica, II Università di Roma (Tor Vergata), Via della Ricerca Scientifica, 00133 Roma, Italy
Email: eslami@mat.uniroma2.it

DOI: https://doi.org/10.1090/tran/6761
Keywords: Exponential mixing, skew product, oscillatory cancellation, transfer operator, partially hyperbolic
Received by editor(s): June 26, 2014
Received by editor(s) in revised form: January 22, 2015
Published electronically: May 6, 2016
Additional Notes: The first author was supported by the Austrian Science Fund, Lise Meitner position M1583.
The second author was supported by an INdAM-COFUND Marie Curie fellowship
This research was partially supported by the Stiftung Aktion Österreich Ungarn (AÖU), Projekt Nr. 87öu6.
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society