Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Preservation of depth in the local geometric Langlands correspondence


Authors: Tsao-Hsien Chen and Masoud Kamgarpour
Journal: Trans. Amer. Math. Soc. 369 (2017), 1345-1364
MSC (2010): Primary 17B67, 17B69, 22E50, 20G25
DOI: https://doi.org/10.1090/tran/6794
Published electronically: July 20, 2016
MathSciNet review: 3572276
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is expected that, under mild conditions, the local Langlands correspondence preserves depths of representations. In this article, we formulate a conjectural geometrisation of this expectation. We prove half of this conjecture by showing that the depth of a categorical representation of the loop group is greater than or equal to the depth of its underlying geometric Langlands parameter. A key ingredient of our proof is a new definition of the slope of a meromorphic connection, a definition which uses opers.


References [Enhancements On Off] (What's this?)

  • [1] Ettore Aldrovandi and Behrang Noohi, Butterflies. I. Morphisms of 2-group stacks, Adv. Math. 221 (2009), no. 3, 687-773. MR 2511036, https://doi.org/10.1016/j.aim.2008.12.014
  • [2] P. Baum, A. Aubert, R. Plymen, and M. Sollevand, Depth and the local Langlands correspondence, 2014, http://arxiv.org/pdf/1311.1606v2.pdf.
  • [3] Donald G. Babbitt and V. S. Varadarajan, Formal reduction theory of meromorphic differential equations: a group theoretic view, Pacific J. Math. 109 (1983), no. 1, 1-80. MR 716289
  • [4] A. Beilinson, Langlands parameters for Heisenberg modules, Studies in Lie theory, Progr. Math., vol. 243, Birkhäuser Boston, Boston, MA, 2006, pp. 51-60. MR 2214245, https://doi.org/10.1007/0-8176-4478-4_4
  • [5] A. Beilinson and V. Drinfeld, Quantization of Hitchin's integrable system and Hecke eigensheaves, 1997, http://www.math.uchicago.edu/~mitya/langlands.html.
  • [6] A. Beilinson and V. Drinfeld, Opers, 2005, http://arxiv.org/pdf/math/0501398.pdf.
  • [7] B. Bremer and D. Sage, A theory of minimal K-types for flat G-bundles, 2013, http://arxiv.org/pdf/1306.3176.pdf.
  • [8] F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5-251 (French). MR 0327923
  • [9] F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d'une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197-376 (French). MR 756316
  • [10] A. V. Chervov and A. I. Molev, On higher-order Sugawara operators, Int. Math. Res. Not. IMRN 9 (2009), 1612-1635. MR 2500972, https://doi.org/10.1093/imrn/rnn168
  • [11] Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin-New York, 1970 (French). MR 0417174
  • [12] V. Drinfeld, On a theorem of Kostant, 2007, http://www.math.uchicago.edu/~mitya/ langlands/Kostant-Theorem.pdf.
  • [13] V. G. Drinfeld and V. V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 81-180 (Russian). MR 760998
  • [14] Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, 2nd ed., Mathematical Surveys and Monographs, vol. 88, American Mathematical Society, Providence, RI, 2004. MR 2082709
  • [15] Boris Feigin and Edward Frenkel, Affine Kac-Moody algebras at the critical level and Gel'fand-Dikiĭ algebras, Infinite analysis, Part A, B (Kyoto, 1991) Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp. 197-215. MR 1187549
  • [16] Edward Frenkel, Langlands correspondence for loop groups, Cambridge Studies in Advanced Mathematics, vol. 103, Cambridge University Press, Cambridge, 2007. MR 2332156
  • [17] Edward Frenkel and Dennis Gaitsgory, Local geometric Langlands correspondence and affine Kac-Moody algebras, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 69-260. MR 2263193, https://doi.org/10.1007/978-0-8176-4532-8_3
  • [18] Edward Frenkel and Dennis Gaitsgory, Localization of $ \mathfrak{g}$-modules on the affine Grassmannian, Ann. of Math. (2) 170 (2009), no. 3, 1339-1381. MR 2600875, https://doi.org/10.4007/annals.2009.170.1339
  • [19] Edward Frenkel and Dennis Gaitsgory, Local geometric Langlands correspondence: the spherical case, Algebraic analysis and around, Adv. Stud. Pure Math., vol. 54, Math. Soc. Japan, Tokyo, 2009, pp. 167-186. MR 2499556
  • [20] Edward Frenkel and Dennis Gaitsgory, $ D$-modules on the affine flag variety and representations of affine Kac-Moody algebras, Represent. Theory 13 (2009), 470-608. MR 2558786, https://doi.org/10.1090/S1088-4165-09-00360-4
  • [21] Edward Frenkel and Benedict Gross, A rigid irregular connection on the projective line, Ann. of Math. (2) 170 (2009), no. 3, 1469-1512. MR 2600880, https://doi.org/10.4007/annals.2009.170.1469
  • [22] Edward Frenkel and Xinwen Zhu, Any flat bundle on a punctured disc has an oper structure, Math. Res. Lett. 17 (2010), no. 1, 27-37. MR 2592725, https://doi.org/10.4310/MRL.2010.v17.n1.a3
  • [23] Masoud Kamgarpour, Compatibility of the Feigin-Frenkel isomorphism and the Harish-Chandra isomorphism for jet algebras, Trans. Amer. Math. Soc. 368 (2016), no. 3, 2019-2038. MR 3449232, https://doi.org/10.1090/S0002-9947-2014-06419-2
  • [24] M. Kamgarpour, On the notion of conductor in the local geometric Langlands correspondence, 2015, http://arxiv.org/abs/1507.02733.
  • [25] Masoud Kamgarpour and Travis Schedler, Geometrization of principal series representations of reductive groups, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 5, 2273-2330 (English, with English and French summaries). MR 3449212
  • [26] Nicholas M. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 175-232. MR 0291177
  • [27] Nicholas M. Katz, Local-to-global extensions of representations of fundamental groups, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 4, 69-106 (English, with French summary). MR 867916
  • [28] Nicholas M. Katz, On the calculation of some differential Galois groups, Invent. Math. 87 (1987), no. 1, 13-61. MR 862711, https://doi.org/10.1007/BF01389152
  • [29] Bertram Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973-1032. MR 0114875
  • [30] Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404. MR 0158024
  • [31] Allen Moy and Gopal Prasad, Unrefined minimal $ K$-types for $ p$-adic groups, Invent. Math. 116 (1994), no. 1-3, 393-408. MR 1253198, https://doi.org/10.1007/BF01231566
  • [32] R. P. Langlands, Functoriality and Reciprocity - Two Lectures at IAS, 2011, http://publications.ias.edu/sites/default/files/functoriality.pdf.
  • [33] Mircea Mustaţă, Jet schemes of locally complete intersection canonical singularities, Invent. Math. 145 (2001), no. 3, 397-424. With an appendix by David Eisenbud and Edward Frenkel. MR 1856396, https://doi.org/10.1007/s002220100152
  • [34] Mark Reeder and Jiu-Kang Yu, Epipelagic representations and invariant theory, J. Amer. Math. Soc. 27 (2014), no. 2, 437-477. MR 3164986, https://doi.org/10.1090/S0894-0347-2013-00780-8
  • [35] J.-P. Serre, Local class field theory, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York, 1979.
  • [36] J. K. Yu, Smooth models associated to concave functions in Bruhat-Tits Theory, 2002, http://www2.ims.nus.edu.sg/preprints/2002-20.pdf.
  • [37] Jiu-Kang Yu, Bruhat-Tits theory and buildings, Ottawa lectures on admissible representations of reductive $ p$-adic groups, Fields Inst. Monogr., vol. 26, Amer. Math. Soc., Providence, RI, 2009, pp. 53-77. MR 2508720
  • [38] X. Zhu, Frenkel-Gross' irregular connection and Heinloth-Ngô-Yun's are the same, 2012, http://arxiv.org/abs/1210.2680.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 17B67, 17B69, 22E50, 20G25

Retrieve articles in all journals with MSC (2010): 17B67, 17B69, 22E50, 20G25


Additional Information

Tsao-Hsien Chen
Affiliation: Department of Mathematics, Northwestern University, Evanston, Illinois 60208
Email: chenth@math.northwestern.edu

Masoud Kamgarpour
Affiliation: School of Mathematics and Physics, The University of Queensland, St. Lucia, Queensland 4072, Australia
Email: masoud@uq.edu.au

DOI: https://doi.org/10.1090/tran/6794
Keywords: Local geometric Langlands, Moy-Prasad Theory, slope of connections, opers, affine vertex algebras, Segal-Sugwara operators
Received by editor(s): November 24, 2014
Received by editor(s) in revised form: January 8, 2015, and July 22, 2015
Published electronically: July 20, 2016
Dedicated: To Volodya Drinfeld, on the occasion of his sixtieth birthday
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society