Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Flat connections and resonance varieties: From rank one to higher ranks


Authors: Daniela Anca Măcinic, Ştefan Papadima, Clement Radu Popescu and Alexander I. Suciu
Journal: Trans. Amer. Math. Soc. 369 (2017), 1309-1343
MSC (2010): Primary 55N25, 55P62; Secondary 14F35, 20F36, 20J05
DOI: https://doi.org/10.1090/tran/6799
Published electronically: April 8, 2016
MathSciNet review: 3572275
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a finitely generated group $ \pi $ and a linear algebraic group $ G$, the representation variety $ \mathrm {Hom}(\pi ,G)$ has a natural filtration by the characteristic varieties associated to a rational representation of $ G$. Its algebraic counterpart, the space of $ \mathfrak{g}$-valued flat connections on a commutative, differential graded algebra $ (A,d)$, admits a filtration by the resonance varieties associated to a representation of $ \mathfrak{g}$. We establish here a number of results concerning the structure and qualitative properties of these embedded resonance varieties, with particular attention to the case when the rank $ 1$ resonance variety decomposes as a finite union of linear subspaces. The general theory is illustrated in detail in the case when $ \pi $ is either an Artin group or the fundamental group of a smooth, quasi-projective variety.


References [Enhancements On Off] (What's this?)

  • [1] Donu Arapura, Geometry of cohomology support loci for local systems. I, J. Algebraic Geom. 6 (1997), no. 3, 563-597. MR 1487227 (98m:32043)
  • [2] Richard Body, Mamoru Mimura, Hiroo Shiga, and Dennis Sullivan, $ p$-universal spaces and rational homotopy types, Comment. Math. Helv. 73 (1998), no. 3, 427-442. MR 1633367 (99e:55017), https://doi.org/10.1007/s000140050063
  • [3] Kuo-Tsai Chen, Extension of $ C^{\infty }$ function algebra by integrals and Malcev completion of $ \pi _{1}$, Advances in Math. 23 (1977), no. 2, 181-210. MR 0458461 (56 #16664)
  • [4] Claude Chevalley and Samuel Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85-124. MR 0024908 (9,567a)
  • [5] Kevin Corlette and Carlos Simpson, On the classification of rank-two representations of quasiprojective fundamental groups, Compos. Math. 144 (2008), no. 5, 1271-1331. MR 2457528 (2010i:14006), https://doi.org/10.1112/S0010437X08003618
  • [6] Alexandru Dimca and Ştefan Papadima, Non-abelian cohomology jump loci from an analytic viewpoint, Commun. Contemp. Math. 16 (2014), no. 4, 1350025, 47 pp.. MR 3231055, https://doi.org/10.1142/S0219199713500259
  • [7] Alexandru Dimca, Ştefan Papadima, and Alexander I. Suciu, Topology and geometry of cohomology jump loci, Duke Math. J. 148 (2009), no. 3, 405-457. MR 2527322 (2011b:14047), https://doi.org/10.1215/00127094-2009-030
  • [8] J. Dixmier, Cohomologie des algèbres de Lie nilpotentes, Acta Sci. Math. Szeged 16 (1955), 246-250 (French). MR 0074780 (17,645b)
  • [9] William Fulton and Joe Harris, Representation theory: A first course, Readings in Mathematics, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. MR 1153249 (93a:20069)
  • [10] William M. Goldman and John J. Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 43-96. MR 972343 (90b:32041)
  • [11] Peter John Hilton and Urs Stammbach, A course in homological algebra, Graduate Texts in Mathematics, vol. 4, Springer-Verlag, New York-Berlin, 1971. MR 0346025 (49 #10751)
  • [12] James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842 (48 #2197)
  • [13] Michael Kapovich and John J. Millson, On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 88 (1998), 5-95 (1999). MR 1733326 (2001d:14024)
  • [14] A. Libgober, First order deformations for rank one local systems with a non-vanishing cohomology, Arrangements in Boston: a Conference on Hyperplane Arrangements (1999), Topology Appl. 118 (2002), no. 1-2, 159-168. MR 1877722 (2002m:52025), https://doi.org/10.1016/S0166-8641(01)00048-7
  • [15] John Milnor and Dale Husemoller, Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73, Springer-Verlag, New York-Heidelberg, 1973. MR 0506372 (58 #22129)
  • [16] John W. Morgan, The algebraic topology of smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 48 (1978), 137-204. MR 516917 (80e:55020)
  • [17] Stefan Papadima and Alexander I. Suciu, Algebraic invariants for right-angled Artin groups, Math. Ann. 334 (2006), no. 3, 533-555. MR 2207874 (2006k:20078), https://doi.org/10.1007/s00208-005-0704-9
  • [18] Stefan Papadima and Alexander I. Suciu, Bieri-Neumann-Strebel-Renz invariants and homology jumping loci, Proc. Lond. Math. Soc. (3) 100 (2010), no. 3, 795-834. MR 2640291 (2011i:55006), https://doi.org/10.1112/plms/pdp045
  • [19] Stefan Papadima and Alexander I. Suciu, Vanishing resonance and representations of Lie algebras, J. Reine Angew. Math. 706 (2015), 83-101. MR 3393364, https://doi.org/10.1515/crelle-2013-0073
  • [20] Stefan Papadima and Alexander I. Suciu, Jump loci in the equivariant spectral sequence, Math. Res. Lett. 21 (2014), no. 4, 863-883. MR 3275650, https://doi.org/10.4310/MRL.2014.v21.n4.a13
  • [21] Ştefan Papadima and Alexander I. Suciu, Non-abelian resonance: product and coproduct formulas, Bridging algebra, geometry, and topology, Springer Proc. Math. Stat., vol. 96, Springer, Cham, 2014, pp. 269-280. MR 3297121, https://doi.org/10.1007/978-3-319-09186-0_17
  • [22] S. Papadima and A. Suciu, The Milnor fibration of a hyperplane arrangement: from modular resonance to algebraic monodromy, preprint http://arxiv.org/abs/1401.0868v2.
  • [23] Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205-295. MR 0258031 (41 #2678)
  • [24] Alexander I. Suciu, Characteristic varieties and Betti numbers of free abelian covers, Int. Math. Res. Not. IMRN 4 (2014), 1063-1124. MR 3168402
  • [25] Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269-331 (1978). MR 0646078 (58 #31119)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 55N25, 55P62, 14F35, 20F36, 20J05

Retrieve articles in all journals with MSC (2010): 55N25, 55P62, 14F35, 20F36, 20J05


Additional Information

Daniela Anca Măcinic
Affiliation: Simion Stoilow Institute of Mathematics, P.O. Box 1-764, RO-014700 Bucharest, Romania
Email: Anca.Macinic@imar.ro

Ştefan Papadima
Affiliation: Simion Stoilow Institute of Mathematics, P.O. Box 1-764, RO-014700 Bucharest, Romania
Email: Stefan.Papadima@imar.ro

Clement Radu Popescu
Affiliation: Simion Stoilow Institute of Mathematics, P.O. Box 1-764, RO-014700 Bucharest, Romania
Email: Radu.Popescu@imar.ro

Alexander I. Suciu
Affiliation: Department of Mathematics, Northeastern University, Boston, Massachusetts 02115
Email: a.suciu@neu.edu

DOI: https://doi.org/10.1090/tran/6799
Keywords: Resonance variety, characteristic variety, differential graded algebra, Lie algebra, flat connection, quasi-projective manifold, Artin group.
Received by editor(s): March 2, 2014
Received by editor(s) in revised form: March 16, 2015, and June 14, 2015
Published electronically: April 8, 2016
Additional Notes: The first author was supported by a grant of the Romanian National Authority for Scientific Research, CNCS UEFISCDI, project number PN-II-RU-PD-2011-3-0149
The second author was partially supported by the Romanian Ministry of National Education, CNCS-UEFISCDI, grant PNII-ID-PCE-2012-4-0156
The third author was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-RU-TE-2012-3-0492
The fourth author was partially supported by NSF grant DMS–1010298 and NSA grant H98230-13-1-0225
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society