Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A categorification of the positive half of quantum $ gl(m\vert 1)$


Authors: Mikhail Khovanov and Joshua Sussan
Journal: Trans. Amer. Math. Soc. 369 (2017), 1627-1664
MSC (2010): Primary 16E20, 16E35
DOI: https://doi.org/10.1090/tran6692
Published electronically: May 6, 2016
MathSciNet review: 3581215
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe a collection of differential graded rings that categorify weight spaces of the positive half of the quantized universal enveloping algebra of the Lie superalgebra $ gl(m\vert 1)$.


References [Enhancements On Off] (What's this?)

  • [1] Susumu Ariki, On the decomposition numbers of the Hecke algebra of $ G(m,1,n)$, J. Math. Kyoto Univ. 36 (1996), no. 4, 789-808. MR 1443748 (98h:20012)
  • [2] Benson, Representations and cohomology, vol. 30 of Cambridge Studies in Mathematics, Cambridge University Press, 1991.
  • [3] G. Bergman, On Jacobson radicals of graded rings, (1975).
  • [4] Joseph Bernstein and Valery Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994. MR 1299527 (95k:55012)
  • [5] S. Clark, D. Hill, and W. Wang, Quantum shuffles and quantum supergroups of basic type, arXiv:1310.7523.
  • [6] I. Grojnowski, Affine $ sl_p $ controls the representation theory of the symmetric group and related Hecke algebras, arXiv RT/9907129.
  • [7] I. Grojnowski and M. Vazirani, Strong multiplicity one theorems for affine Hecke algebras of type A, Transform. Groups 6 (2001), no. 2, 143-155. MR 1835669 (2002c:20008), https://doi.org/10.1007/BF01597133
  • [8] David Hill and Weiqiang Wang, Categorification of quantum Kac-Moody superalgebras, Trans. Amer. Math. Soc. 367 (2015), no. 2, 1183-1216. MR 3280041, https://doi.org/10.1090/S0002-9947-2014-06128-X
  • [9] V. G. Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8-96. MR 0486011 (58 #5803)
  • [10] Christian Kassel, Marc Rosso, and Vladimir Turaev, Quantum groups and knot invariants, Panoramas et Synthèses [Panoramas and Syntheses], vol. 5, Société Mathématique de France, Paris, 1997 (English, with English, French, German and Russian summaries). MR 1470954 (99b:57011)
  • [11] Bernhard Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63-102. MR 1258406 (95e:18010)
  • [12] M. Khovanov, How to categorify one-half of quantum $ gl(1\vert 2)$, to appear in Fundamenta Mathematicae, arXiv:1007.3517.
  • [13] Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of quantum groups. I, Represent. Theory 13 (2009), 309-347. MR 2525917 (2010i:17023), https://doi.org/10.1090/S1088-4165-09-00346-X
  • [14] M. Khovanov and A. Lauda, A diagrammatic approach to categorification of quantum groups III, Quantum Topology Vol 1, Issue 1, (2010), 1-92, arXiv:0807.3250.
  • [15] Alexander Kleshchev, Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, vol. 163, Cambridge University Press, Cambridge, 2005. MR 2165457 (2007b:20022)
  • [16] T. Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics, vol. 131, Springer-Verlag, New York, 1991. MR 1125071 (92f:16001)
  • [17] Aaron D. Lauda, A categorification of quantum $ {\rm sl}(2)$, Adv. Math. 225 (2010), no. 6, 3327-3424. MR 2729010 (2012b:17036), https://doi.org/10.1016/j.aim.2010.06.003
  • [18] R. Lipshitz, P. Ozsváth, and D. Thurston, Bordered Heegaard Floer homology: invariance and pairing, arXiv:0810.0687.
  • [19] Robert Lipshitz, Peter Ozsváth, and Dylan Thurston, Slicing planar grid diagrams: a gentle introduction to bordered Heegaard Floer homology, Proceedings of Gökova Geometry-Topology Conference 2008, Gökova Geometry/Topology Conference (GGT), Gökova, 2009, pp. 91-119. MR 2500575 (2010m:57046)
  • [20] George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098 (94m:17016)
  • [21] Constantin Năstăsescu and Freddy Van Oystaeyen, Methods of graded rings, Lecture Notes in Mathematics, vol. 1836, Springer-Verlag, Berlin, 2004. MR 2046303 (2005d:16075)
  • [22] Markus Reineke, Monomials in canonical bases of quantum groups and quadratic forms, J. Pure Appl. Algebra 157 (2001), no. 2-3, 301-309. MR 1812057 (2002e:17022), https://doi.org/10.1016/S0022-4049(00)00008-6
  • [23] Jeremy Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), no. 3, 436-456. MR 1002456 (91b:18012), https://doi.org/10.1112/jlms/s2-39.3.436
  • [24] R. Rouquier, 2-Kac-Moody algebras, arXiv:0812.5023.
  • [25] A. Sartori, Categorification of tensor powers of the vector representation of $ U_q(gl(1\vert 1))$, arXiv:1305.6162.
  • [26] Y. Tian, A categorification of $ U_q(sl(1,1))$ as an algebra, arXiv:1210.5680.
  • [27] Y. Tian, A categorification of $ U_T(sl(1,1))$ and its tensor product representations, arXiv:1301.3986.
  • [28] Hiroyuki Yamane, Quantized enveloping algebras associated with simple Lie superalgebras and their universal $ R$-matrices, Publ. Res. Inst. Math. Sci. 30 (1994), no. 1, 15-87. MR 1266383 (95d:17017), https://doi.org/10.2977/prims/1195166275

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 16E20, 16E35

Retrieve articles in all journals with MSC (2010): 16E20, 16E35


Additional Information

Mikhail Khovanov
Affiliation: Department of Mathematics, Columbia University, New York, New York 10027
Email: khovanov@math.columbia.edu

Joshua Sussan
Affiliation: Department of Mathematics, CUNY Medgar Evers, Brooklyn, New York 11225
Email: jsussan@mec.cuny.edu

DOI: https://doi.org/10.1090/tran6692
Received by editor(s): June 10, 2014
Received by editor(s) in revised form: February 18, 2015, and March 2, 2015
Published electronically: May 6, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society