Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Auslander-Reiten quiver of type A and generalized quantum affine Schur-Weyl duality


Author: Se-jin Oh
Journal: Trans. Amer. Math. Soc. 369 (2017), 1895-1933
MSC (2010): Primary 05E10, 16T30, 17B37; Secondary 81R50
DOI: https://doi.org/10.1090/tran6704
Published electronically: May 3, 2016
MathSciNet review: 3581223
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The quiver Hecke algebra $ R$ can be also understood as a generalization of the affine Hecke algebra of type $ A$ in the context of the quantum affine Schur-Weyl duality by the results of Kang, Kashiwara and Kim. On the other hand, it is well known that the Auslander-Reiten (AR) quivers $ \Gamma _Q$ of finite simply-laced types have a deep relation with the positive roots systems of the corresponding types. In this paper, we present explicit combinatorial descriptions for the AR-quivers $ \Gamma _Q$ of finite type $ A$. Using the combinatorial descriptions, we can investigate relations between finite dimensional module categories over the quantum affine algebra $ U'_q(A_n^{(i)})$ $ (i=1,2)$ and finite dimensional graded module categories over the quiver Hecke algebra $ R_{A_n}$ associated to $ A_n$ through the generalized quantum affine Schur-Weyl duality functor.


References [Enhancements On Off] (What's this?)

  • [1] Tatsuya Akasaka and Masaki Kashiwara, Finite-dimensional representations of quantum affine algebras, Publ. Res. Inst. Math. Sci. 33 (1997), no. 5, 839-867. MR 1607008 (99d:17017), https://doi.org/10.2977/prims/1195145020
  • [2] Susumu Ariki, On the decomposition numbers of the Hecke algebra of $ G(m,1,n)$, J. Math. Kyoto Univ. 36 (1996), no. 4, 789-808. MR 1443748 (98h:20012)
  • [3] Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1995. MR 1314422 (96c:16015)
  • [4] Ibrahim Assem, Daniel Simson, and Andrzej Skowroński, Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Society Student Texts, vol. 65, Cambridge University Press, Cambridge, 2006. Techniques of representation theory. MR 2197389 (2006j:16020)
  • [5] Robert Bédard, On commutation classes of reduced words in Weyl groups, European J. Combin. 20 (1999), no. 6, 483-505. MR 1703595 (2001i:05160), https://doi.org/10.1006/eujc.1999.0296
  • [6] Georgia Benkart, Seok-Jin Kang, Se-jin Oh, and Euiyong Park, Construction of irreducible representations over Khovanov-Lauda-Rouquier algebras of finite classical type, Int. Math. Res. Not. IMRN 5 (2014), 1312-1366. MR 3178600
  • [7] Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996), no. 1, 49-149. MR 1405449 (98j:17008), https://doi.org/10.1006/aima.1996.0057
  • [8] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968 (French). MR 0240238 (39 #1590)
  • [9] Sheila Brenner, A combinatorial characterisation of finite Auslander-Reiten quivers, Representation theory, I (Ottawa, Ont., 1984) Lecture Notes in Math., vol. 1177, Springer, Berlin, 1986, pp. 13-49. MR 842457 (87m:16045), https://doi.org/10.1007/BFb0075256
  • [10] Jonathan Brundan and Alexander Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math. 178 (2009), no. 3, 451-484. MR 2551762 (2010k:20010), https://doi.org/10.1007/s00222-009-0204-8
  • [11] Jonathan Brundan and Alexander Kleshchev, Graded decomposition numbers for cyclotomic Hecke algebras, Adv. Math. 222 (2009), no. 6, 1883-1942. MR 2562768 (2011i:20002), https://doi.org/10.1016/j.aim.2009.06.018
  • [12] Jonathan Brundan, Alexander Kleshchev, and Peter J. McNamara, Homological properties of finite-type Khovanov-Lauda-Rouquier algebras, Duke Math. J. 163 (2014), no. 7, 1353-1404. MR 3205728, https://doi.org/10.1215/00127094-2681278
  • [13] Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, and Gordana Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572-618. MR 2249625 (2007f:16033), https://doi.org/10.1016/j.aim.2005.06.003
  • [14] Vyjayanthi Chari and Andrew Pressley, Yangians, integrable quantum systems and Dorey's rule, Comm. Math. Phys. 181 (1996), no. 2, 265-302. MR 1414834 (97h:81080)
  • [15] I. V. Cherednik, A new interpretation of Gelfand-Tzetlin bases, Duke Math. J. 54 (1987), no. 2, 563-577. MR 899405 (88k:17005), https://doi.org/10.1215/S0012-7094-87-05423-8
  • [16] Etsurō Date and Masato Okado, Calculation of excitation spectra of the spin model related with the vector representation of the quantized affine algebra of type $ A^{(1)}_n$, Internat. J. Modern Phys. A 9 (1994), no. 3, 399-417. MR 1257517 (95a:82032), https://doi.org/10.1142/S0217751X94000194
  • [17] Edward Frenkel and Evgeny Mukhin, Combinatorics of $ q$-characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys. 216 (2001), no. 1, 23-57. MR 1810773 (2002c:17023), https://doi.org/10.1007/s002200000323
  • [18] Peter Gabriel, Auslander-Reiten sequences and representation-finite algebras, Representation theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math., vol. 831, Springer, Berlin, 1980, pp. 1-71. MR 607140 (82i:16030)
  • [19] Victor Ginzburg, Nicolai Reshetikhin, and Éric Vasserot, Quantum groups and flag varieties, Mathematical aspects of conformal and topological field theories and quantum groups (South Hadley, MA, 1992) Contemp. Math., vol. 175, Amer. Math. Soc., Providence, RI, 1994, pp. 101-130. MR 1302015 (95j:17014), https://doi.org/10.1090/conm/175/01840
  • [20] Dieter Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. MR 935124 (89e:16035)
  • [21] David Hernandez, Kirillov-Reshetikhin conjecture: the general case, Int. Math. Res. Not. IMRN 1 (2010), 149-193. MR 2576287 (2011c:17029), https://doi.org/10.1093/imrn/rnp121
  • [22] David Hernandez and Bernard Leclerc, Quantum Grothendieck rings and derived Hall algebras, J. Reine Angew. Math. 701 (2015), 77-126. MR 3331727, https://doi.org/10.1515/crelle-2013-0020
  • [23] David Hill, George Melvin, and Damien Mondragon, Representations of quiver Hecke algebras via Lyndon bases, J. Pure Appl. Algebra 216 (2012), no. 5, 1052-1079. MR 2875327, https://doi.org/10.1016/j.jpaa.2011.12.015
  • [24] Jun Hu and Andrew Mathas, Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type $ A$, Adv. Math. 225 (2010), no. 2, 598-642. MR 2671176 (2011g:20006), https://doi.org/10.1016/j.aim.2010.03.002
  • [25] Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219 (92k:17038)
  • [26] Seok-Jin Kang and Masaki Kashiwara, Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras, Invent. Math. 190 (2012), no. 3, 699-742. MR 2995184, https://doi.org/10.1007/s00222-012-0388-1
  • [27] S.-J. Kang, M. Kashiwara, and M. Kim, Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, arXiv:1304.0323 [math.RT].
  • [28] Seok-Jin Kang, Masaki Kashiwara, and Myungho Kim, Symmetric quiver Hecke algebras and $ R$-matrices of quantum affine algebras, II, Duke Math. J. 164 (2015), no. 8, 1549-1602. MR 3352041, https://doi.org/10.1215/00127094-3119632
  • [29] Seok-Jin Kang, Masaki Kashiwara, Myungho Kim, and Se-jin Oh, Simplicity of heads and socles of tensor products, Compos. Math. 151 (2015), no. 2, 377-396. MR 3314831, https://doi.org/10.1112/S0010437X14007799
  • [30] Seok-Jin Kang, Masaki Kashiwara, Myungho Kim, and Se-jin Oh,
    Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras IV, arXiv:1502.07415 [math.RT].
  • [31] Seok-Jin Kang, Masaki Kashiwara, and Se-jin Oh, Supercategorification of quantum Kac-Moody algebras, Adv. Math. 242 (2013), 116-162. MR 3055990, https://doi.org/10.1016/j.aim.2013.04.008
  • [32] Seok-Jin Kang and Euiyong Park, Irreducible modules over Khovanov-Lauda-Rouquier algebras of type $ A_n$ and semistandard tableaux, J. Algebra 339 (2011), 223-251. MR 2811321 (2012f:17012), https://doi.org/10.1016/j.jalgebra.2011.05.013
  • [33] M. Kashiwara, On crystal bases of the $ Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465-516. MR 1115118 (93b:17045), https://doi.org/10.1215/S0012-7094-91-06321-0
  • [34] Masaki Kashiwara, The crystal base and Littelmann's refined Demazure character formula, Duke Math. J. 71 (1993), no. 3, 839-858. MR 1240605 (95b:17019), https://doi.org/10.1215/S0012-7094-93-07131-1
  • [35] Masaki Kashiwara, On level-zero representations of quantized affine algebras, Duke Math. J. 112 (2002), no. 1, 117-175. MR 1890649 (2002m:17013), https://doi.org/10.1215/S0012-9074-02-11214-9
  • [36] Masaki Kashiwara and Toshiki Nakashima, Crystal graphs for representations of the $ q$-analogue of classical Lie algebras, J. Algebra 165 (1994), no. 2, 295-345. MR 1273277 (95c:17025), https://doi.org/10.1006/jabr.1994.1114
  • [37] Syu Kato, Poincaré-Birkhoff-Witt bases and Khovanov-Lauda-Rouquier algebras, Duke Math. J. 163 (2014), no. 3, 619-663. MR 3165425, https://doi.org/10.1215/00127094-2405388
  • [38] Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of quantum groups. I, Represent. Theory 13 (2009), 309-347. MR 2525917 (2010i:17023), https://doi.org/10.1090/S1088-4165-09-00346-X
  • [39] Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc. 363 (2011), no. 5, 2685-2700. MR 2763732 (2012a:17021), https://doi.org/10.1090/S0002-9947-2010-05210-9
  • [40] Alexander Kleshchev and Arun Ram, Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words, Math. Ann. 349 (2011), no. 4, 943-975. MR 2777040 (2012b:16078), https://doi.org/10.1007/s00208-010-0543-1
  • [41] Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys. 181 (1996), no. 1, 205-263. MR 1410572 (97k:17019)
  • [42] Aaron D. Lauda and Monica Vazirani, Crystals from categorified quantum groups, Adv. Math. 228 (2011), no. 2, 803-861. MR 2822211 (2012i:17013), https://doi.org/10.1016/j.aim.2011.06.009
  • [43] Peter J. McNamara, Finite dimensional representations of Khovanov-Lauda-Rouquier algebras I: Finite type, J. Reine Angew. Math. 707 (2015), 103-124. MR 3403455, https://doi.org/10.1515/crelle-2013-0075
  • [44] Se-jin Oh, The denominators of normalized $ R$-matrices of types $ A_{2n-1}^{(2)}$, $ A_{2n}^{(2)}$, $ B_n^{(1)}$ and $ D_{n+1}^{(2)}$, Publ. Res. Inst. Math. Sci. 51 (2015), no. 4, 709-744. MR 3421906
  • [45] Se-jin Oh, Auslander-Reiten quiver of type D and generalized quantum affine Schur-Weyl duality, arXiv:1406.4555 [math.RT].
  • [46] Paolo Papi, A characterization of a special ordering in a root system, Proc. Amer. Math. Soc. 120 (1994), no. 3, 661-665. MR 1169886 (94e:20056), https://doi.org/10.2307/2160454
  • [47] Claus Michael Ringel, PBW-bases of quantum groups, J. Reine Angew. Math. 470 (1996), 51-88. MR 1370206 (97d:17009), https://doi.org/10.1515/crll.1996.470.51
  • [48] R. Rouquier, 2 Kac-Moody algebras, arXiv:0812.5023 (2008).
  • [49] M. Varagnolo and E. Vasserot, Canonical bases and KLR-algebras, J. Reine Angew. Math. 659 (2011), 67-100. MR 2837011, https://doi.org/10.1515/CRELLE.2011.068

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 05E10, 16T30, 17B37, 81R50

Retrieve articles in all journals with MSC (2010): 05E10, 16T30, 17B37, 81R50


Additional Information

Se-jin Oh
Affiliation: School of Mathematics, Korea Institute for Advanced Study Seoul 130-722, Korea
Address at time of publication: Department of Mathematics, Ewha Womans University, Seoul 120-750, Korea
Email: sejin092@gmail.com

DOI: https://doi.org/10.1090/tran6704
Received by editor(s): May 13, 2014
Received by editor(s) in revised form: November 14, 2014, March 10, 2015, and March 13, 2015
Published electronically: May 3, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society