Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Accesses to infinity from Fatou components


Authors: Krzysztof Barański, Núria Fagella, Xavier Jarque and Bogusława Karpińska
Journal: Trans. Amer. Math. Soc. 369 (2017), 1835-1867
MSC (2010): Primary 30D05, 37F10, 30D30
DOI: https://doi.org/10.1090/tran/6739
Published electronically: May 2, 2016
MathSciNet review: 3581221
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the boundary behaviour of a meromorphic map $ f: \mathbb{C} \to \widehat {\mathbb{C}}$ on its simply connected invariant Fatou component $ U$. To this aim, we develop the theory of accesses to boundary points of $ U$ and their relation to the dynamics of $ f$. In particular, we establish a correspondence between invariant accesses from $ U$ to infinity or weakly repelling fixed points of $ f$ and boundary fixed points of the associated inner function on the unit disc. We apply our results to describe the accesses to infinity from invariant Fatou components of the Newton maps.


References [Enhancements On Off] (What's this?)

  • [1] I. N. Baker, The domains of normality of an entire function, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), no. 2, 277-283. MR 0402044 (53 #5867)
  • [2] I. N. Baker and P. Domínguez, Boundaries of unbounded Fatou components of entire functions, Ann. Acad. Sci. Fenn. Math. 24 (1999), no. 2, 437-464. MR 1724391 (2000j:37055)
  • [3] I. N. Baker and J. Weinreich, Boundaries which arise in the dynamics of entire functions, Rev. Roumaine Math. Pures Appl. 36 (1991), no. 7-8, 413-420. MR 1144573 (93e:30056)
  • [4] Krzysztof Barański, Trees and hairs for some hyperbolic entire maps of finite order, Math. Z. 257 (2007), no. 1, 33-59. MR 2318569 (2008f:37097), https://doi.org/10.1007/s00209-007-0114-7
  • [5] Krzysztof Barański, Núria Fagella, Xavier Jarque, and Bogusława Karpińska, Absorbing sets and Baker domains for holomorphic maps, J. Lond. Math. Soc. (2) 92 (2015), no. 1, 144-162. MR 3384509, https://doi.org/10.1112/jlms/jdv016
  • [6] Krzysztof Barański, Núria Fagella, Xavier Jarque, and Bogusława Karpińska, Connectivity of the Julia sets of Newton maps: A unified approach, preprint arXiv:1501.05488.
  • [7] Krzysztof Barański, Núria Fagella, Xavier Jarque, and Bogusława Karpińska, On the connectivity of the Julia sets of meromorphic functions, Invent. Math. 198 (2014), no. 3, 591-636. MR 3279533, https://doi.org/10.1007/s00222-014-0504-5
  • [8] Krzysztof Barański and Bogusława Karpińska, Coding trees and boundaries of attracting basins for some entire maps, Nonlinearity 20 (2007), no. 2, 391-415. MR 2290468 (2007m:37105), https://doi.org/10.1088/0951-7715/20/2/008
  • [9] Detlef Bargmann, Iteration of inner functions and boundaries of components of the Fatou set, Transcendental dynamics and complex analysis, London Math. Soc. Lecture Note Ser., vol. 348, Cambridge Univ. Press, Cambridge, 2008, pp. 1-36. MR 2458797 (2009m:30045), https://doi.org/10.1017/CBO9780511735233.003
  • [10] Walter Bergweiler, Núria Fagella, and Lasse Rempe-Gillen, Hyperbolic entire functions with bounded Fatou components, Comment. Math. Helv. 90 (2015), no. 4, 799-829. MR 3433280, https://doi.org/10.4171/CMH/371
  • [11] Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383 (94h:30033)
  • [12] E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, Cambridge, 1966. MR 0231999 (38 #325)
  • [13] Robert L. Devaney and Lisa R. Goldberg, Uniformization of attracting basins for exponential maps, Duke Math. J. 55 (1987), no. 2, 253-266. MR 894579 (88h:30035), https://doi.org/10.1215/S0012-7094-87-05513-X
  • [14] Núria Fagella and Christian Henriksen, Deformation of entire functions with Baker domains, Discrete Contin. Dyn. Syst. 15 (2006), no. 2, 379-394. MR 2199435 (2006i:37106), https://doi.org/10.3934/dcds.2006.15.379
  • [15] John B. Garnett, Bounded analytic functions, 1st ed., Graduate Texts in Mathematics, vol. 236, Springer, New York, 2007. MR 2261424 (2007e:30049)
  • [16] Maurice Heins, Asymptotic spots of entire and meromorphic functions, Ann. of Math. (2) 66 (1957), 430-439. MR 0094457 (20 #975)
  • [17] Maurice Heins, Some characterizations of finite Blaschke products of positive degree, J. Analyse Math. 46 (1986), 162-166. MR 861696 (87k:30063), https://doi.org/10.1007/BF02796581
  • [18] John Hubbard, Dierk Schleicher, and Scott Sutherland, How to find all roots of complex polynomials by Newton's method, Invent. Math. 146 (2001), no. 1, 1-33. MR 1859017 (2002i:37059), https://doi.org/10.1007/s002220100149
  • [19] K. Kuratowski, Topology. Vol. II, New edition, revised and augmented. Translated from the French by A. Kirkor, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw, 1968. MR 0259835 (41 #4467)
  • [20] Olli Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47-65. MR 0087746 (19,403f)
  • [21] Sebastian Mayer and Dierk Schleicher, Immediate and virtual basins of Newton's method for entire functions, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 2, 325-336 (English, with English and French summaries). MR 2226018 (2007b:30028)
  • [22] John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309 (2006g:37070)
  • [23] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706 (95b:30008)
  • [24] Johannes Rückert and Dierk Schleicher, On Newton's method for entire functions, J. Lond. Math. Soc. (2) 75 (2007), no. 3, 659-676. MR 2352728 (2010h:30047), https://doi.org/10.1112/jlms/jdm046
  • [25] Joel H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1237406 (94k:47049)
  • [26] Mitsuhiro Shishikura, The connectivity of the Julia set and fixed points, Complex dynamics, A K Peters, Wellesley, MA, 2009, pp. 257-276. MR 2508260 (2010d:37093), https://doi.org/10.1201/b10617-9
  • [27] Gordon Thomas Whyburn, Analytic topology, American Mathematical Society Colloquium Publications, Vol. XXVIII, American Mathematical Society, Providence, R.I., 1963. MR 0182943 (32 #425)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 30D05, 37F10, 30D30

Retrieve articles in all journals with MSC (2010): 30D05, 37F10, 30D30


Additional Information

Krzysztof Barański
Affiliation: Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland
Email: baranski@mimuw.edu.pl

Núria Fagella
Affiliation: Barcelona Graduate School of Mathematics and Departament de Matemàtiques i Informàtica, Universitat de Barcelona, 08007 Barcelona, Catalonia, Spain
Email: fagella@maia.ub.es

Xavier Jarque
Affiliation: Barcelona Graduate School of Mathematics and Departament de Matemàtiques i Informàtica, Universitat de Barcelona, 08007 Barcelona, Catalonia, Spain
Email: xavier.jarque@ub.edu

Bogusława Karpińska
Affiliation: Faculty of Mathematics and Information Science, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
Email: bkarpin@mini.pw.edu.pl

DOI: https://doi.org/10.1090/tran/6739
Received by editor(s): November 25, 2014
Received by editor(s) in revised form: March 9, 2015
Published electronically: May 2, 2016
Additional Notes: The second and third authors were partially supported by the Catalan grant 2009SGR-792, the Spanish grants MTM2011-26995-C02-02 and MTM2014-52209-22-2-P and the María de Maeztu grant MDM-2014-0445.
The four authors were supported by the Polish NCN grant decision DEC-2012/06/M/ ST1/00168
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society