Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Laguerre operator and its associated weighted Besov and Triebel-Lizorkin spaces


Authors: The Anh Bui and Xuan Thinh Duong
Journal: Trans. Amer. Math. Soc. 369 (2017), 2109-2150
MSC (2010): Primary 60J10, 42B20, 42B25
DOI: https://doi.org/10.1090/tran/6745
Published electronically: May 17, 2016
MathSciNet review: 3581229
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Consider the space $ X=(0,\infty )$ equipped with the Euclidean distance and the measure $ d\mu _\alpha (x)=x^{\alpha }dx$ where $ \alpha \in (-1,\infty )$ is a fixed constant and $ dx$ is the Lebesgue measure. Consider the Laguerre operator $ \displaystyle L=-\frac {d^2}{dx^2} -\frac {\alpha }{x}\frac {d}{dx}+x^2$ on $ X$. The aim of this article is threefold. Firstly, we establish a Calderón reproducing formula using a suitable distribution of the Laguerre operator. Secondly, we study certain properties of the Laguerre operator such as a Harnack type inequality on the solutions and subsolutions of Laplace equations associated to Laguerre operators. Thirdly, we establish the theory of the weighted homogeneous Besov and Triebel-Lizorkin spaces associated to the Laguerre operator. We define the weighted homogeneous Besov and Triebel-Lizorkin spaces by the square functions of the Laguerre operator, then show that these spaces have an atomic decomposition. We then study the fractional powers $ L^{-\gamma }, \gamma >0$, and show that these operators map boundedly from one weighted Besov space (or one weighted Triebel-Lizorkin space) to another suitable weighted Besov space (or weighted Triebel-Lizorkin space). We also show that in particular cases of the indices, our new weighted Besov and Triebel-Lizorkin spaces coincide with the (expected) weighted Hardy spaces, the weighted $ L^p$ spaces or the weighted Sobolev spaces in Laguerre settings.


References [Enhancements On Off] (What's this?)

  • [1] Pascal Auscher and José María Martell, Weighted norm inequalities, off-diagonal estimates and elliptic operators. III. Harmonic analysis of elliptic operators, J. Funct. Anal. 241 (2006), no. 2, 703-746. MR 2271934, https://doi.org/10.1016/j.jfa.2006.07.008
  • [2] Nadine Badr and Besma Ben Ali, $ L^p$ boundedness of the Riesz transform related to Schrödinger operators on a manifold, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8 (2009), no. 4, 725-765. MR 2647910
  • [3] S. Buckley, P. Koskela, and G. Lu, Subelliptic Poincaré inequalities: the case $ p<1$, Publ. Mat. 39 (1995), no. 2, 313-334. MR 1370889, https://doi.org/10.5565/PUBLMAT_39295_08
  • [4] Huy-Qui Bui, Xuan Thinh Duong, and Lixin Yan, Calderón reproducing formulas and new Besov spaces associated with operators, Adv. Math. 229 (2012), no. 4, 2449-2502. MR 2880229, https://doi.org/10.1016/j.aim.2012.01.005
  • [5] H.-Q. Bui, M. Paluszyński, and M. Taibleson, A note on the Besov-Lipschitz and Triebel-Lizorkin spaces, Harmonic analysis and operator theory (Caracas, 1994) Contemp. Math., vol. 189, Amer. Math. Soc., Providence, RI, 1995, pp. 95-101. MR 1347008, https://doi.org/10.1090/conm/189/02258
  • [6] H.-Q. Bui, M. Paluszyński, and M. H. Taibleson, A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces, Studia Math. 119 (1996), no. 3, 219-246. MR 1397492
  • [7] H.-Q. Bui, M. Paluszyński, and M. Taibleson, Characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces. The case $ q<1$, Proceedings of the conference dedicated to Professor Miguel de Guzmán (El Escorial, 1996), 1997, pp. Special Issue, 837-846. MR 1600199, https://doi.org/10.1007/BF02656489
  • [8] The Anh Bui, Jun Cao, Luong Dang Ky, Dachun Yang, and Sibei Yang, Weighted Hardy spaces associated with operators satisfying reinforced off-diagonal estimates, Taiwanese J. Math. 17 (2013), no. 4, 1127-1166. MR 3085503
  • [9] The Anh Bui, Jun Cao, Luong Dang Ky, Dachun Yang, and Sibei Yang, Musielak-Orlicz-Hardy spaces associated with operators satisfying reinforced off-diagonal estimates, Anal. Geom. Metr. Spaces 1 (2013), 69-129. MR 3108869
  • [10] Luis A. Caffarelli, Sandro Salsa, and Luis Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math. 171 (2008), no. 2, 425-461. MR 2367025, https://doi.org/10.1007/s00222-007-0086-6
  • [11] Luis Caffarelli and Luis Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260. MR 2354493, https://doi.org/10.1080/03605300600987306
  • [12] Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569-645. MR 0447954
  • [13] E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239
  • [14] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364
  • [15] Xuan Thinh Duong and Lixin Yan, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds, J. Amer. Math. Soc. 18 (2005), no. 4, 943-973 (electronic). MR 2163867, https://doi.org/10.1090/S0894-0347-05-00496-0
  • [16] Xuan Thinh Duong and Lixin Yan, New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications, Comm. Pure Appl. Math. 58 (2005), no. 10, 1375-1420. MR 2162784, https://doi.org/10.1002/cpa.20080
  • [17] Jacek Dziubański, Atomic decomposition of Hardy spaces associated with certain Laguerre expansions, J. Fourier Anal. Appl. 15 (2009), no. 2, 129-152. MR 2500919, https://doi.org/10.1007/s00041-008-9020-6
  • [18] Cristian E. Gutiérrez, Harnack's inequality for degenerate Schrödinger operators, Trans. Amer. Math. Soc. 312 (1989), no. 1, 403-419. MR 948190, https://doi.org/10.2307/2001222
  • [19] Eugene B. Fabes, Carlos E. Kenig, and Raul P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77-116. MR 643158, https://doi.org/10.1080/03605308208820218
  • [20] Michael Frazier and Björn Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), no. 4, 777-799. MR 808825, https://doi.org/10.1512/iumj.1985.34.34041
  • [21] Michael Frazier and Björn Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34-170. MR 1070037, https://doi.org/10.1016/0022-1236(90)90137-A
  • [22] Steve Hofmann and Svitlana Mayboroda, Hardy and BMO spaces associated to divergence form elliptic operators, Math. Ann. 344 (2009), no. 1, 37-116. MR 2481054, https://doi.org/10.1007/s00208-008-0295-3
  • [23] Steve Hofmann, Guozhen Lu, Dorina Mitrea, Marius Mitrea, and Lixin Yan, Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, Mem. Amer. Math. Soc. 214 (2011), no. 1007, vi+78. MR 2868142, https://doi.org/10.1090/S0065-9266-2011-00624-6
  • [24] Loukas Grafakos, Liguang Liu, and Dachun Yang, Vector-valued singular integrals and maximal functions on spaces of homogeneous type, Math. Scand. 104 (2009), no. 2, 296-310. MR 2542655
  • [25] David Kinderlehrer and Guido Stampacchia, An introduction to variational inequalities and their applications, Pure and Applied Mathematics, vol. 88, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 567696
  • [26] Gerard Kerkyacharian and Pencho Petrushev, Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces, Trans. Amer. Math. Soc. 367 (2015), no. 1, 121-189. MR 3271256, https://doi.org/10.1090/S0002-9947-2014-05993-X
  • [27] G. Kerkyacharian, P. Petrushev, D. Picard, and Yuan Xu, Decomposition of Triebel-Lizorkin and Besov spaces in the context of Laguerre expansions, J. Funct. Anal. 256 (2009), no. 4, 1137-1188. MR 2488337, https://doi.org/10.1016/j.jfa.2008.09.015
  • [28] R. Macías, C. Segovia, and J. L. Torrea, Heat-diffusion maximal operators for Laguerre semigroups with negative parameters, J. Funct. Anal. 229 (2005), no. 2, 300-316. MR 2182591, https://doi.org/10.1016/j.jfa.2005.02.005
  • [29] N. N. Lebedev, Special functions and their applications, Dover Publications, Inc., New York, 1972. Revised edition, translated from the Russian and edited by Richard A. Silverman; Unabridged and corrected republication. MR 0350075
  • [30] Adam Nowak, Heat-diffusion and Poisson integrals for Laguerre and special Hermite expansions on weighted $ L^p$ spaces, Studia Math. 158 (2003), no. 3, 239-268. MR 2014301, https://doi.org/10.4064/sm158-3-5
  • [31] Adam Nowak and Krzysztof Stempak, Riesz transforms for multi-dimensional Laguerre function expansions, Adv. Math. 215 (2007), no. 2, 642-678. MR 2355604, https://doi.org/10.1016/j.aim.2007.04.010
  • [32] Marcin Preisner, Riesz transform characterization of $ H^1$ spaces associated with certain Laguerre expansions, J. Approx. Theory 164 (2012), no. 2, 229-252. MR 2864644, https://doi.org/10.1016/j.jat.2011.10.004
  • [33] Pablo Raúl Stinga and José Luis Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations 35 (2010), no. 11, 2092-2122. MR 2754080, https://doi.org/10.1080/03605301003735680
  • [34] Krzysztof Stempak and José Luis Torrea, Poisson integrals and Riesz transforms for Hermite function expansions with weights, J. Funct. Anal. 202 (2003), no. 2, 443-472. MR 1990533, https://doi.org/10.1016/S0022-1236(03)00083-1
  • [35] Sundaram Thangavelu, Lectures on Hermite and Laguerre expansions, Mathematical Notes, vol. 42, Princeton University Press, Princeton, NJ, 1993. With a preface by Robert S. Strichartz. MR 1215939
  • [36] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
  • [37] Pablo Raúl Stinga and Chao Zhang, Harnack's inequality for fractional nonlocal equations, Discrete Contin. Dyn. Syst. 33 (2013), no. 7, 3153-3170. MR 3007742, https://doi.org/10.3934/dcds.2013.33.3153
  • [38] Jan-Olov Strömberg and Alberto Torchinsky, Weighted Hardy spaces, Lecture Notes in Mathematics, vol. 1381, Springer-Verlag, Berlin, 1989. MR 1011673

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 60J10, 42B20, 42B25

Retrieve articles in all journals with MSC (2010): 60J10, 42B20, 42B25


Additional Information

The Anh Bui
Affiliation: Department of Mathematics, Macquarie University, New South Wales 2109, Australia – and – Department of Mathematics, University of Pedagogy, HoChiMinh City, Vietnam
Email: the.bui@mq.edu.au, bt_anh80@yahoo.com

Xuan Thinh Duong
Affiliation: Department of Mathematics, Macquarie University, New South Wales 2109, Australia
Email: xuan.duong@mq.edu.au

DOI: https://doi.org/10.1090/tran/6745
Keywords: Laguerre operator, Besov space, Triebel-Lizorkin space, atomic decomposition
Received by editor(s): September 1, 2014
Received by editor(s) in revised form: April 7, 2015
Published electronically: May 17, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society