Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Lower bounds on the arithmetic self-intersection number of the relative dualizing sheaf on arithmetic surfaces


Authors: Ulf Kühn and J. Steffen Müller
Journal: Trans. Amer. Math. Soc. 369 (2017), 1869-1894
MSC (2010): Primary 14G40; Secondary 11G50, 11G30, 14H25
DOI: https://doi.org/10.1090/tran/6787
Published electronically: June 2, 2016
MathSciNet review: 3581222
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give an explicitly computable lower bound for the arithmetic self-intersection number $ \overline {\omega }^2$ of the dualizing sheaf on a large class of arithmetic surfaces. If some technical conditions are satisfied, then this lower bound is positive. In particular, these technical conditions are always satisfied for minimal arithmetic surfaces with simple multiplicities and at least one reducible fiber, but we also use our techniques to obtain lower bounds for some arithmetic surfaces with non-reduced fibers.


References [Enhancements On Off] (What's this?)

  • [1] Ahmed Abbes and Emmanuel Ullmo, Auto-intersection du dualisant relatif des courbes modulaires $ X_0(N)$, J. Reine Angew. Math. 484 (1997), 1-70 (French). MR 1437298 (99e:11077)
  • [2] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822 (91i:14034)
  • [3] J.-B. Bost, H. Gillet, and C. Soulé, Heights of projective varieties and positive Green forms, J. Amer. Math. Soc. 7 (1994), no. 4, 903-1027. MR 1260106 (95j:14025), https://doi.org/10.2307/2152736
  • [4] Jean-François Burnol, Weierstrass points on arithmetic surfaces, Invent. Math. 107 (1992), no. 2, 421-432. MR 1144430 (93b:14040), https://doi.org/10.1007/BF01231896
  • [5] Ted Chinburg and Robert Rumely, The capacity pairing, J. Reine Angew. Math. 434 (1993), 1-44. MR 1195689 (94b:14019), https://doi.org/10.1515/crll.1993.434.1
  • [6] Zubeyir Cinkir, Zhang's conjecture and the effective Bogomolov conjecture over function fields, Invent. Math. 183 (2011), no. 3, 517-562. MR 2772087 (2012c:14057), https://doi.org/10.1007/s00222-010-0282-7
  • [7] Zubeyir Cinkir, The tau constant and the discrete Laplacian matrix of a metrized graph, European J. Combin. 32 (2011), no. 4, 639-655. MR 2780862 (2012a:05180), https://doi.org/10.1016/j.ejc.2011.01.008
  • [8] C. Curilla and U. Kühn, On the arithmetic self-intersection number of the dualizing sheaf for Fermat curves of prime exponent, Preprint (2009). arXiv:math/0906.3891v1
  • [9] Robin de Jong, Arakelov invariants of Riemann surfaces, Doc. Math. 10 (2005), 311-329 (electronic). MR 2184455 (2006j:14030)
  • [10] Robin de Jong, Admissible constants for genus 2 curves, Bull. Lond. Math. Soc. 42 (2010), no. 3, 405-411. MR 2651934 (2011k:14026), https://doi.org/10.1112/blms/bdp132
  • [11] Robin de Jong, Symmetric roots and admissible pairing, Trans. Amer. Math. Soc. 363 (2011), no. 8, 4263-4283. MR 2792987 (2012k:11086), https://doi.org/10.1090/S0002-9947-2011-05217-7
  • [12] Gerd Faltings, Calculus on arithmetic surfaces, Ann. of Math. (2) 119 (1984), no. 2, 387-424. MR 740897 (86e:14009), https://doi.org/10.2307/2007043
  • [13] Paul Hriljac, Heights and Arakelov's intersection theory, Amer. J. Math. 107 (1985), no. 1, 23-38. MR 778087 (86c:14024), https://doi.org/10.2307/2374455
  • [14] Serge Lang, Introduction to Arakelov theory, Springer-Verlag, New York, 1988. MR 969124 (89m:11059)
  • [15] Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. MR 1917232 (2003g:14001)
  • [16] Qing Liu, Stable reduction of finite covers of curves, Compos. Math. 142 (2006), no. 1, 101-118. MR 2196764 (2007k:14057), https://doi.org/10.1112/S0010437X05001557
  • [17] Hartwig Mayer, Self-intersection of the relative dualizing sheaf on modular curves $ X_1(N)$, J. Théor. Nombres Bordeaux 26 (2014), no. 1, 111-161 (English, with English and French summaries). MR 3232770
  • [18] William G. McCallum, The degenerate fibre of the Fermat curve, Number theory related to Fermat's last theorem (Cambridge, Mass., 1981), Progr. Math., vol. 26, Birkhäuser, Boston, Mass., 1982, pp. 57-70. MR 685288 (84m:14028)
  • [19] Atsushi Moriwaki, Lower bound of self-intersection of dualizing sheaves on arithmetic surfaces with reducible fibres, Math. Ann. 305 (1996), no. 1, 183-190. MR 1386111 (97b:14025), https://doi.org/10.1007/BF01444217
  • [20] Christophe Soulé, Géométrie d'Arakelov des surfaces arithmétiques, Séminaire Bourbaki, Vol. 1988/89, Astérisque 177-178 (1989), Exp. No. 713, 327-343 (French). MR 1040579 (91c:14031)
  • [21] Xiaotao Sun, On relative canonical sheaves of arithmetic surfaces, Math. Z. 223 (1996), no. 4, 709-723. MR 1421965 (97k:14022), https://doi.org/10.1007/PL00004282
  • [22] L. Szpiro, Sur les propriétés numériques du dualisant relatif d'une surface arithmétique, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 229-246 (French). MR 1106917 (92c:14017), https://doi.org/10.1007/978-0-8176-4576-2_9
  • [23] Emmanuel Ullmo, Positivité et discrétion des points algébriques des courbes, Ann. of Math. (2) 147 (1998), no. 1, 167-179 (French). MR 1609514 (99e:14031), https://doi.org/10.2307/120987
  • [24] Shouwu Zhang, Positive line bundles on arithmetic surfaces, Ann. of Math. (2) 136 (1992), no. 3, 569-587. MR 1189866 (93j:14024), https://doi.org/10.2307/2946601
  • [25] Shouwu Zhang, Admissible pairing on a curve, Invent. Math. 112 (1993), no. 1, 171-193. MR 1207481 (94h:14023), https://doi.org/10.1007/BF01232429
  • [26] Shou-Wu Zhang, Gross-Schoen cycles and dualising sheaves, Invent. Math. 179 (2010), no. 1, 1-73. MR 2563759 (2012a:14016), https://doi.org/10.1007/s00222-009-0209-3

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 14G40, 11G50, 11G30, 14H25

Retrieve articles in all journals with MSC (2010): 14G40, 11G50, 11G30, 14H25


Additional Information

Ulf Kühn
Affiliation: Fachbereich Mathematik, Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
Email: kuehn@math.uni-hamburg.de

J. Steffen Müller
Affiliation: Fachbereich Mathematik, Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
Address at time of publication: Institut für Mathematik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
Email: jan.steffen.mueller@uni-oldenburg.de

DOI: https://doi.org/10.1090/tran/6787
Received by editor(s): October 15, 2013
Received by editor(s) in revised form: March 11, 2015
Published electronically: June 2, 2016
Additional Notes: The second author was supported by DFG grant KU 2359/2-1
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society