Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Nakayama automorphism and applications


Authors: J.-F. Lü, X.-F. Mao and J. J. Zhang
Journal: Trans. Amer. Math. Soc. 369 (2017), 2425-2460
MSC (2010): Primary 16E40, 16S36; Secondary 16E65
DOI: https://doi.org/10.1090/tran/6718
Published electronically: June 20, 2016
MathSciNet review: 3592516
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Nakayama automorphism is used to study group actions and Hopf algebra actions on Artin-Schelter regular algebras of global dimension three.


References [Enhancements On Off] (What's this?)

  • [AS] Michael Artin and William F. Schelter, Graded algebras of global dimension $ 3$, Adv. in Math. 66 (1987), no. 2, 171-216. MR 917738 (88k:16003), https://doi.org/10.1016/0001-8708(87)90034-X
  • [ATV1] M. Artin, J. Tate, and M. Van den Bergh, Modules over regular algebras of dimension $ 3$, Invent. Math. 106 (1991), no. 2, 335-388. MR 1128218 (93e:16055), https://doi.org/10.1007/BF01243916
  • [ATV2] M. Artin, J. Tate, and M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 33-85. MR 1086882 (92e:14002)
  • [AEH] Shreeram S. Abhyankar, William Heinzer, and Paul Eakin, On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972), 310-342. MR 0306173 (46 #5300)
  • [BeZ] J. P. Bell and J. J. Zhang, Zariski cancellation problem for noncommutative algebras, in preparation.
  • [BrZ] K. A. Brown and J. J. Zhang, Dualising complexes and twisted Hochschild (co)homology for Noetherian Hopf algebras, J. Algebra 320 (2008), no. 5, 1814-1850. MR 2437632 (2009j:16007), https://doi.org/10.1016/j.jalgebra.2007.03.050
  • [CPWZ1] S. Ceken, J. H. Palmieri, Y.-H. Wang, and J. J. Zhang, The discriminant controls automorphism groups of noncommutative algebras, Adv. Math. 269 (2015), 551-584. MR 3281142, https://doi.org/10.1016/j.aim.2014.10.018
  • [CPWZ2] S. Ceken, J. H. Palmieri, Y.-H. Wang, and J. J. Zhang, The discriminant criterion and automorphism groups of quantized algebras, Adv. Math. 286 (2016), 754-801. MR 3415697, https://doi.org/10.1016/j.aim.2015.09.024
  • [CKWZ] K. Chan, E. Kirkman, C. Walton and J. J. Zhang, Quantum binary polyhedral groups and their actions on quantum planes, J. reine angew. Math. (Crelle's Journal), accepted for publication, arXiv:1303.7203.
  • [CWZ] Kenneth Chan, Chelsea Walton, and James Zhang, Hopf actions and Nakayama automorphisms, J. Algebra 409 (2014), 26-53. MR 3198834, https://doi.org/10.1016/j.jalgebra.2014.04.003
  • [EW] Pavel Etingof and Chelsea Walton, Semisimple Hopf actions on commutative domains, Adv. Math. 251 (2014), 47-61. MR 3130334, https://doi.org/10.1016/j.aim.2013.10.008
  • [Fu] Takao Fujita, On Zariski problem, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 3, 106-110. MR 531454 (80j:14029)
  • [Gi] V. Ginzburg, Calabi-Yau algebras, arXiv:math/0612139 v3, 2006.
  • [GY] K. R. Goodearl and M. T. Yakimov, Unipotent and Nakayama automorphisms of quantum nilpotent algebras, preprint (2013), arXiv:1311.0278.
  • [Gu1] Neena Gupta, On the cancellation problem for the affine space $ \mathbb{A}^3$ in characteristic $ p$, Invent. Math. 195 (2014), no. 1, 279-288. MR 3148104, https://doi.org/10.1007/s00222-013-0455-2
  • [Gu2] Neena Gupta, On Zariski's cancellation problem in positive characteristic, Adv. Math. 264 (2014), 296-307. MR 3250286, https://doi.org/10.1016/j.aim.2014.07.012
  • [HS] F. K. Schmidt and H. Hasse, Noch eine Begründung der Theorie der höheren Differentialquotienten in einem algebraischen Funktionenkörper einer Unbestimmten. (Nach einer brieflichen Mitteilung von F.K. Schmidt in Jena), J. Reine Angew. Math. 177 (1937), 215-237 (German). MR 1581557, https://doi.org/10.1515/crll.1937.177.215
  • [KK] Ellen Kirkman and James Kuzmanovich, Fixed subrings of Noetherian graded regular rings, J. Algebra 288 (2005), no. 2, 463-484. MR 2146140 (2006b:16055), https://doi.org/10.1016/j.jalgebra.2005.01.024
  • [LR1] Richard G. Larson and David E. Radford, Semisimple cosemisimple Hopf algebras, Amer. J. Math. 110 (1988), no. 1, 187-195. MR 926744 (89a:16011), https://doi.org/10.2307/2374545
  • [LR2] Richard G. Larson and David E. Radford, Finite-dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple, J. Algebra 117 (1988), no. 2, 267-289. MR 957441 (89k:16016), https://doi.org/10.1016/0021-8693(88)90107-X
  • [LWW] Liyu Liu, Shengqiang Wang, and Quanshui Wu, Twisted Calabi-Yau property of Ore extensions, J. Noncommut. Geom. 8 (2014), no. 2, 587-609. MR 3275042, https://doi.org/10.4171/JNCG/165
  • [Ma] L. Makar-Limanov, On the hypersurface $ x+x^2y+z^2+t^3=0$ in $ {\bf C}^4$ or a $ {\bf C}^3$-like threefold which is not $ {\bf C}^3$. part B, Israel J. Math. 96 (1996), no. part B, 419-429. MR 1433698 (98a:14052), https://doi.org/10.1007/BF02937314
  • [Mo] Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR 1243637 (94i:16019)
  • [MS] Masayoshi Miyanishi and Tohru Sugie, Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ. 20 (1980), no. 1, 11-42. MR 564667 (81h:14020)
  • [RRZ1] Manuel Reyes, Daniel Rogalski, and James J. Zhang, Skew Calabi-Yau algebras and homological identities, Adv. Math. 264 (2014), 308-354. MR 3250287, https://doi.org/10.1016/j.aim.2014.07.010
  • [RRZ2] M. Reyes, D. Rogalski, and J. J. Zhang, Skew Calabi-Yau triangulated categories and Frobenius Ext-algebras, Trans. Amer. Math. Soc., electronically published on March 18, 2016, DOI: https://doi.org/ 10.1090/tran/6640 (to appear in print).
  • [Ru] Peter Russell, On affine-ruled rational surfaces, Math. Ann. 255 (1981), no. 3, 287-302. MR 615851 (82h:14024), https://doi.org/10.1007/BF01450704
  • [Sh] Evgenij N. Shirikov, Two-generated graded algebras, Algebra Discrete Math. 3 (2005), 60-84. MR 2237896 (2007f:16088)
  • [Ye] Amnon Yekutieli, The rigid dualizing complex of a universal enveloping algebra, J. Pure Appl. Algebra 150 (2000), no. 1, 85-93. MR 1762922 (2001g:16014), https://doi.org/10.1016/S0022-4049(99)00032-8
  • [Zh] J. J. Zhang, Twisted graded algebras and equivalences of graded categories, Proc. London Math. Soc. (3) 72 (1996), no. 2, 281-311. MR 1367080 (96k:16078), https://doi.org/10.1112/plms/s3-72.2.281

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 16E40, 16S36, 16E65

Retrieve articles in all journals with MSC (2010): 16E40, 16S36, 16E65


Additional Information

J.-F. Lü
Affiliation: Department of Mathematics, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
Email: jiafenglv@zjnu.edu.cn

X.-F. Mao
Affiliation: Department of Mathematics, Shanghai University, Shanghai 200444, People’s Republic of China
Email: xuefengmao@shu.edu.cn

J. J. Zhang
Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98105
Email: zhang@washington.edu

DOI: https://doi.org/10.1090/tran/6718
Keywords: Nakayama automorphism, Artin-Schelter regular algebra, group action, Hopf algebra action, automorphism group, cancellation problem
Received by editor(s): August 16, 2014
Received by editor(s) in revised form: April 7, 2015
Published electronically: June 20, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society