Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Derangements in subspace actions of finite classical groups


Authors: Jason Fulman and Robert Guralnick
Journal: Trans. Amer. Math. Soc. 369 (2017), 2521-2572
MSC (2010): Primary 20G40, 20B15
DOI: https://doi.org/10.1090/tran/6721
Published electronically: June 20, 2016
MathSciNet review: 3592520
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This is the third in a series of four papers in which we prove a conjecture made by Boston et al. and Shalev that the proportion of derangements (fixed point free elements) is bounded away from zero for transitive actions of finite simple groups on a set of size greater than one. This paper treats the case of primitive subspace actions. It is also shown that if the dimension and codimension of the subspace go to infinity, then the proportion of derangements goes to one. Similar results are proved for elements in finite classical groups in cosets of the simple group. The results in this paper have applications to probabilistic generation of finite simple groups and maps between varieties over finite fields.


References [Enhancements On Off] (What's this?)

  • [A1] George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR 0557013 (58 #27738)
  • [AT] Richard Arratia and Simon Tavaré, The cycle structure of random permutations, Ann. Probab. 20 (1992), no. 3, 1567-1591. MR 1175278 (93g:60013)
  • [BDF] Nigel Boston, Walter Dabrowski, Tuval Foguel et al., The proportion of fixed-point-free elements of a transitive permutation group, Comm. Algebra 21 (1993), no. 9, 3259-3275. MR 1228762 (94e:20002), https://doi.org/10.1080/00927879308824728
  • [B1] John R. Britnell, Cyclic, separable and semisimple matrices in the special linear groups over a finite field, J. London Math. Soc. (2) 66 (2002), no. 3, 605-622. MR 1934295 (2003k:11039), https://doi.org/10.1112/S0024610702003678
  • [B2] John R. Britnell, Cyclic, separable and semisimple transformations in the special unitary groups over a finite field, J. Group Theory 9 (2006), no. 4, 547-569. MR 2243246 (2007e:20101), https://doi.org/10.1515/JGT.2006.037
  • [B3] John R. Britnell, Cycle index methods for finite groups of orthogonal type in odd characteristic, J. Group Theory 9 (2006), no. 6, 753-773. MR 2272715 (2007i:20075), https://doi.org/10.1515/JGT.2006.048
  • [B4] John R. Britnell, Cyclic, separable and semisimple transformations in the finite conformal groups, J. Group Theory 9 (2006), no. 5, 571-601. MR 2253954 (2007h:20047), https://doi.org/10.1515/JGT.2006.038
  • [DFG] Persi Diaconis, Jason Fulman, and Robert Guralnick, On fixed points of permutations, J. Algebraic Combin. 28 (2008), no. 1, 189-218. MR 2420785 (2009g:20002), https://doi.org/10.1007/s10801-008-0135-2
  • [DPi] Persi Diaconis and J. Pitman, Permutations, record values, and random measures, Unpublished lecture notes, Statistics Dept., University of California, Berkeley, 1986.
  • [D] John D. Dixon, Random sets which invariably generate the symmetric group, Discrete Math. 105 (1992), no. 1-3, 25-39. MR 1180190 (93e:20004), https://doi.org/10.1016/0012-365X(92)90129-4
  • [Fe] W. Feller, An introduction to probability theory and its applications, Volume 1, 2nd ed., Wiley and Sons, 1957.
  • [FlJ] Peter Fleischmann and Ingo Janiszczak, The number of regular semisimple elements for Chevalley groups of classical type, J. Algebra 155 (1993), no. 2, 482-528. MR 1212240 (94f:20090), https://doi.org/10.1006/jabr.1993.1055
  • [F] Jason Fulman, Cycle indices for the finite classical groups, J. Group Theory 2 (1999), no. 3, 251-289. MR 1696313 (2001d:20045), https://doi.org/10.1515/jgth.1999.017
  • [FG1] Jason Fulman and Robert Guralnick, Derangements in simple and primitive groups, Groups, combinatorics & geometry (Durham, 2001) World Sci. Publ., River Edge, NJ, 2003, pp. 99-121. MR 1994962 (2004e:20003), https://doi.org/10.1142/9789812564481_0006
  • [FG2] Jason Fulman and Robert Guralnick, Derangements in finite classical groups for actions related to extension field and imprimitive subgroups, preprint.
  • [FG3] Jason Fulman and Robert Guralnick, Conjugacy class properties of the extension of $ {\rm GL}(n,q)$ generated by the inverse transpose involution, J. Algebra 275 (2004), no. 1, 356-396. MR 2047453 (2005f:20085), https://doi.org/10.1016/j.jalgebra.2003.07.004
  • [FG4] Jason Fulman and Robert Guralnick, The probability of generating an irreducible subgroup, preprint.
  • [FG5] Jason Fulman and Robert Guralnick, Bounds on the number and sizes of conjugacy classes in finite Chevalley groups with applications to derangements, Trans. Amer. Math. Soc. 364 (2012), no. 6, 3023-3070. MR 2888238, https://doi.org/10.1090/S0002-9947-2012-05427-4
  • [FNP] Jason Fulman, Peter M. Neumann, and Cheryl E. Praeger, A generating function approach to the enumeration of matrices in classical groups over finite fields, Mem. Amer. Math. Soc. 176 (2005), no. 830, vi+90 pp.. MR 2145026 (2006b:05125), https://doi.org/10.1090/memo/0830
  • [GuLub] Robert M. Guralnick and Frank Lübeck, On $ p$-singular elements in Chevalley groups in characteristic $ p$, Groups and computation, III (Columbus, OH, 1999) Ohio State Univ. Math. Res. Inst. Publ., vol. 8, de Gruyter, Berlin, 2001, pp. 169-182. MR 1829478 (2002d:20074)
  • [GW] Robert Guralnick and Daqing Wan, Bounds for fixed point free elements in a transitive group and applications to curves over finite fields, Israel J. Math. 101 (1997), 255-287. MR 1484879 (98j:12002), https://doi.org/10.1007/BF02760932
  • [H] I. N. Herstein, Topics in algebra, 2nd ed., Xerox College Publishing, Lexington, Mass.-Toronto, Ont., 1975. MR 0356988 (50 #9456)
  • [JK] Gordon James and Adalbert Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR 644144 (83k:20003)
  • [KLS] W. M. Kantor, A. Lubotzky, and A. Shalev, Invariable generation and the Chebotarev invariant of a finite group, J. Algebra 348 (2011), 302-314. MR 2852243, https://doi.org/10.1016/j.jalgebra.2011.09.022
  • [K] Joseph P. S. Kung, The cycle structure of a linear transformation over a finite field, Linear Algebra Appl. 36 (1981), 141-155. MR 604337 (82d:15012), https://doi.org/10.1016/0024-3795(81)90227-5
  • [LiN] Rudolf Lidl and Harald Niederreiter, Introduction to finite fields and their applications, revision of the 1986 first edition, Cambridge University Press, Cambridge, 1994. MR 1294139 (95f:11098)
  • [LucPy] Tomasz Łuczak and László Pyber, On random generation of the symmetric group, Combin. Probab. Comput. 2 (1993), no. 4, 505-512. MR 1264722 (95b:20004), https://doi.org/10.1017/S0963548300000869
  • [M] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144 (96h:05207)
  • [NP] Peter M. Neumann and Cheryl E. Praeger, Derangements and eigenvalue-free elements in finite classical groups, J. London Math. Soc. (2) 58 (1998), no. 3, 564-586. MR 1678151 (2000a:20153), https://doi.org/10.1112/S0024610798006772
  • [NP2] Peter M. Neumann and Cheryl E. Praeger, Cyclic matrices over finite fields, J. London Math. Soc. (2) 52 (1995), no. 2, 263-284. MR 1356142 (96j:15017), https://doi.org/10.1112/jlms/52.2.263
  • [O] A. M. Odlyzko, Asymptotic enumeration methods, Handbook of combinatorics, Vol. 1, 2, Elsevier, Amsterdam, 1995, pp. 1063-1229. MR 1373678 (97b:05012)
  • [Se] Jean-Pierre Serre, On a theorem of Jordan, Bull. Amer. Math. Soc. (N.S.) 40 (2003), no. 4, 429-440 (electronic). MR 1997347 (2004f:11040), https://doi.org/10.1090/S0273-0979-03-00992-3
  • [Sh] Aner Shalev, A theorem on random matrices and some applications, J. Algebra 199 (1998), no. 1, 124-141. MR 1489358 (99a:20048), https://doi.org/10.1006/jabr.1997.7167
  • [ShLl] L. A. Shepp and S. P. Lloyd, Ordered cycle lengths in a random permutation, Trans. Amer. Math. Soc. 121 (1966), 340-357. MR 0195117 (33 #3320)
  • [SS] T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167-266. MR 0268192 (42 #3091)
  • [St] Richard Stong, Some asymptotic results on finite vector spaces, Adv. in Appl. Math. 9 (1988), no. 2, 167-199. MR 937520 (89c:05007), https://doi.org/10.1016/0196-8858(88)90012-7
  • [Wa] G. E. Wall, Counting cyclic and separable matrices over a finite field, Bull. Austral. Math. Soc. 60 (1999), no. 2, 253-284. MR 1711918 (2000k:11137), https://doi.org/10.1017/S000497270003639X

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 20G40, 20B15

Retrieve articles in all journals with MSC (2010): 20G40, 20B15


Additional Information

Jason Fulman
Affiliation: Department of Mathematics, University of Southern California, Los Angeles, California 90089-2532
Email: fulman@usc.edu

Robert Guralnick
Affiliation: Department of Mathematics, University of Southern California, Los Angeles, California 90089-2532
Email: guralnic@math.usc.edu

DOI: https://doi.org/10.1090/tran/6721
Keywords: Derangement, finite classical group, random matrix, random permutation
Received by editor(s): April 8, 2013
Received by editor(s) in revised form: July 28, 2014, and April 14, 2015
Published electronically: June 20, 2016
Additional Notes: The first author was partially supported by NSA grants H98230-13-1-0219 and by Simons Foundation Fellowship 229181
The second author was partially supported by NSF grants DMS-1001962 and DMS-1302886 and by Simons Foundation Fellowship 224965
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society