Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Hilbert transform along measurable vector fields constant on Lipschitz curves: $ L^p$ boundedness


Author: Shaoming Guo
Journal: Trans. Amer. Math. Soc. 369 (2017), 2493-2519
MSC (2010): Primary 42B20, 42B25
DOI: https://doi.org/10.1090/tran/6750
Published electronically: May 25, 2016
MathSciNet review: 3592519
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the $ L^p$ ($ p>3/2$) boundedness of the directional Hilbert transform in the plane relative to measurable vector fields which are constant on suitable Lipschitz curves.


References [Enhancements On Off] (What's this?)

  • [1] P. Auscher, S. Hofmann, C. Muscalu, T. Tao, and C. Thiele, Carleson measures, trees, extrapolation, and $ T(b)$ theorems, Publ. Mat. 46 (2002), no. 2, 257-325. MR 1934198 (2003f:42019), https://doi.org/10.5565/PUBLMAT_46202_01
  • [2] Jonas Azzam and Raanan Schul, Hard Sard: quantitative implicit function and extension theorems for Lipschitz maps, Geom. Funct. Anal. 22 (2012), no. 5, 1062-1123. MR 2989430, https://doi.org/10.1007/s00039-012-0189-0
  • [3] Michael Bateman, $ L^p$ estimates for maximal averages along one-variable vector fields in $ \mathbf {R}^2$, Proc. Amer. Math. Soc. 137 (2009), no. 3, 955-963. MR 2457435 (2010e:42023), https://doi.org/10.1090/S0002-9939-08-09583-X
  • [4] Michael Bateman, Single annulus $ L^p$ estimates for Hilbert transforms along vector fields, Rev. Mat. Iberoam. 29 (2013), no. 3, 1021-1069. MR 3090145, https://doi.org/10.4171/RMI/748
  • [5] Michael Bateman and Christoph Thiele, $ L^p$ estimates for the Hilbert transforms along a one-variable vector field, Anal. PDE 6 (2013), no. 7, 1577-1600. MR 3148061, https://doi.org/10.2140/apde.2013.6.1577
  • [6] Frédéric Bernicot, Fiber-wise Calderón-Zygmund decomposition and application to a bi-dimensional paraproduct, Illinois J. Math. 56 (2012), no. 2, 415-422. MR 3161332
  • [7] J. Bourgain, A remark on the maximal function associated to an analytic vector field, Analysis at Urbana, Vol. I (Urbana, IL, 1986-1987) London Math. Soc. Lecture Note Ser., vol. 137, Cambridge Univ. Press, Cambridge, 1989, pp. 111-132. MR 1009171 (90h:42028)
  • [8] Anthony Carbery, Andreas Seeger, Stephen Wainger, and James Wright, Classes of singular integral operators along variable lines, J. Geom. Anal. 9 (1999), no. 4, 583-605. MR 1757580 (2001g:42026), https://doi.org/10.1007/BF02921974
  • [9] Emanuel Carneiro and Diogo Oliveira e Silva, Some sharp restriction inequalities on the sphere, Int. Math. Res. Not. IMRN 17 (2015), 8233-8267. MR 3404013, https://doi.org/10.1093/imrn/rnu194
  • [10] Michael Christ, Alexander Nagel, Elias M. Stein, and Stephen Wainger, Singular and maximal Radon transforms: analysis and geometry, Ann. of Math. (2) 150 (1999), no. 2, 489-577. MR 1726701 (2000j:42023), https://doi.org/10.2307/121088
  • [11] R. R. Coifman, Peter W. Jones, and Stephen Semmes, Two elementary proofs of the $ L^2$ boundedness of Cauchy integrals on Lipschitz curves, J. Amer. Math. Soc. 2 (1989), no. 3, 553-564. MR 986825 (90k:42017), https://doi.org/10.2307/1990943
  • [12] Antonio Cordoba, The Kakeya maximal function and the spherical summation multipliers, Amer. J. Math. 99 (1977), no. 1, 1-22. MR 0447949 (56 #6259)
  • [13] Ciprian Demeter and Francesco Di Plinio, Logarithmic $ L^p$ bounds for maximal directional singular integrals in the plane, J. Geom. Anal. 24 (2014), no. 1, 375-416. MR 3145928, https://doi.org/10.1007/s12220-012-9340-2
  • [14] Damiano Foschi, Maximizers for the Strichartz inequality, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 4, 739-774. MR 2341830 (2008k:35389), https://doi.org/10.4171/JEMS/95
  • [15] Shaoming Guo, Hilbert transform along measurable vector fields constant on Lipschitz curves: $ L^2$ boundedness, Anal. PDE 8 (2015), no. 5, 1263-1288. MR 3393679, https://doi.org/10.2140/apde.2015.8.1263
  • [16] Peter W. Jones, Square functions, Cauchy integrals, analytic capacity, and harmonic measure, Harmonic analysis and partial differential equations (El Escorial, 1987), Lecture Notes in Math., vol. 1384, Springer, Berlin, 1989, pp. 24-68. MR 1013815 (91b:42032), https://doi.org/10.1007/BFb0086793
  • [17] Nets Hawk Katz, A partial result on Lipschitz differentiation, Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001) Contemp. Math., vol. 320, Amer. Math. Soc., Providence, RI, 2003, pp. 217-224. MR 1979942 (2004e:42030), https://doi.org/10.1090/conm/320/05609
  • [18] Joonil Kim, Maximal average along variable lines, Israel J. Math. 167 (2008), 1-13. MR 2448014 (2009h:42031), https://doi.org/10.1007/s11856-008-1037-7
  • [19] Damiano Foschi and Sergiu Klainerman, Bilinear space-time estimates for homogeneous wave equations, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 2, 211-274 (English, with English and French summaries). MR 1755116 (2001g:35145), https://doi.org/10.1016/S0012-9593(00)00109-9
  • [20] Vjekoslav Kovač, Boundedness of the twisted paraproduct, Rev. Mat. Iberoam. 28 (2012), no. 4, 1143-1164. MR 2990138, https://doi.org/10.4171/RMI/707
  • [21] Michael Lacey and Christoph Thiele, $ L^p$ estimates for the bilinear Hilbert transform, Proc. Nat. Acad. Sci. U.S.A. 94 (1997), no. 1, 33-35. MR 1425870 (98e:44001), https://doi.org/10.1073/pnas.94.1.33
  • [22] Michael T. Lacey and Christoph M. Thiele, On Calderón's conjecture for the bilinear Hilbert transform, Proc. Natl. Acad. Sci. USA 95 (1998), no. 9, 4828-4830 (electronic). MR 1619285 (99e:42013), https://doi.org/10.1073/pnas.95.9.4828
  • [23] Michael Lacey and Christoph Thiele, A proof of boundedness of the Carleson operator, Math. Res. Lett. 7 (2000), no. 4, 361-370. MR 1783613 (2001m:42009), https://doi.org/10.4310/MRL.2000.v7.n4.a1
  • [24] Michael T. Lacey and Xiaochun Li, Maximal theorems for the directional Hilbert transform on the plane, Trans. Amer. Math. Soc. 358 (2006), no. 9, 4099-4117 (electronic). MR 2219012 (2006k:42018), https://doi.org/10.1090/S0002-9947-06-03869-4
  • [25] Michael Lacey and Xiaochun Li, On a conjecture of E. M. Stein on the Hilbert transform on vector fields, Mem. Amer. Math. Soc. 205 (2010), no. 965, viii+72. MR 2654385 (2011c:42019), https://doi.org/10.1090/S0065-9266-10-00572-7
  • [26] Oskar Perron, Über einen Satz von Besicovitsch, Math. Z. 28 (1928), no. 1, 383-386 (German). MR 1544966, https://doi.org/10.1007/BF01181172
  • [27] Elias M. Stein and Brian Street, Multi-parameter singular Radon transforms III: Real analytic surfaces, Adv. Math. 229 (2012), no. 4, 2210-2238. MR 2880220, https://doi.org/10.1016/j.aim.2011.11.016

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 42B20, 42B25

Retrieve articles in all journals with MSC (2010): 42B20, 42B25


Additional Information

Shaoming Guo
Affiliation: Institute of Mathematics, University of Bonn, Endenicher Allee 60, 53115, Bonn, Germany
Address at time of publication: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
Email: shaoguo@iu.edu

DOI: https://doi.org/10.1090/tran/6750
Keywords: Singular integral, differentiation theorem, Jones' beta numbers, one-parameter family of paraproducts, Littlewood-Paley theory on Lipschitz curves
Received by editor(s): January 10, 2015
Received by editor(s) in revised form: April 13, 2015
Published electronically: May 25, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society