Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Angles in hyperbolic lattices: The pair correlation density


Authors: Morten S. Risager and Anders Södergren
Journal: Trans. Amer. Math. Soc. 369 (2017), 2807-2841
MSC (2010): Primary 11N45; Secondary 11P21, 20H10
DOI: https://doi.org/10.1090/tran/6770
Published electronically: December 7, 2016
MathSciNet review: 3592529
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is well known that the angles in a lattice acting on hyperbolic $ n$-space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the density function in both the small and large variable limits. This extends earlier results by Boca, Paşol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension $ n$. Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead to effective results with explicit rates.


References [Enhancements On Off] (What's this?)

  • [1] Florin P. Boca, Vicenţiu Paşol, Alexandru A. Popa, and Alexandru Zaharescu, Pair correlation of angles between reciprocal geodesics on the modular surface, Algebra Number Theory 8 (2014), no. 4, 999-1035. MR 3248992, https://doi.org/10.2140/ant.2014.8.999
  • [2] Florin P. Boca, Distribution of angles between geodesic rays associated with hyperbolic lattice points, Q. J. Math. 58 (2007), no. 3, 281-295. MR 2354919 (2008j:11142), https://doi.org/10.1093/qmath/ham014
  • [3] Florin P. Boca, Alexandru A. Popa, and Alexandru Zaharescu, Pair correlation of hyperbolic lattice angles, Int. J. Number Theory 10 (2014), no. 8, 1955-1989. MR 3273472, https://doi.org/10.1142/S1793042114500651
  • [4] Peter Buser, Geometry and spectra of compact Riemann surfaces, Progress in Mathematics, vol. 106, Birkhäuser Boston, Inc., Boston, MA, 1992. MR 1183224 (93g:58149)
  • [5] Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584 (86g:58140)
  • [6] Jean Delsarte, Sur le gitter fuchsien, C. R. Acad. Sci. Paris 214 (1942), 147-179 (French). MR 0007769 (4,191a)
  • [7] J. Elstrodt, F. Grunewald, and J. Mennicke, Arithmetic applications of the hyperbolic lattice point theorem, Proc. London Math. Soc. (3) 57 (1988), no. 2, 239-283. MR 950591 (89g:11033), https://doi.org/10.1112/plms/s3-57.2.239
  • [8] Anton Good, Local analysis of Selberg's trace formula, Lecture Notes in Mathematics, vol. 1040, Springer-Verlag, Berlin, 1983. MR 727476 (85k:11026)
  • [9] Alexander Gorodnik and Amos Nevo, Counting lattice points, J. Reine Angew. Math. 663 (2012), 127-176. MR 2889708, https://doi.org/10.1515/CRELLE.2011.096
  • [10] Paul Günther, Gitterpunktprobleme in symmetrischen Riemannschen Räumen vom Rang $ 1$, Math. Nachr. 94 (1980), 5-27 (German). MR 582516 (82b:58098), https://doi.org/10.1002/mana.19800940102
  • [11] Sigurur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455 (26 #2986)
  • [12] Sigurdur Helgason, Groups and geometric analysis: Integral geometry, invariant differential operators, and spherical functions, Mathematical Surveys and Monographs, vol. 83, American Mathematical Society, Providence, RI, 2000. Corrected reprint of the 1984 original. MR 1790156 (2001h:22001)
  • [13] Heinz Huber, Über eine neue Klasse automorpher Funktionen und ein Gitterpunktproblem in der hyperbolischen Ebene. I, Comment. Math. Helv. 30 (1956), 20-62 (1955) (German). MR 0074536 (17,603b)
  • [14] Heinz Huber, Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen, Math. Ann. 138 (1959), 1-26 (German). MR 0109212 (22 #99)
  • [15] Dubi Kelmer and Alex Kontorovich, On the pair correlation density for hyperbolic angles, Duke Math. J. 164 (2015), no. 3, 473-509. MR 3314478, https://doi.org/10.1215/00127094-2861495
  • [16] Alex Kontorovich and Hee Oh, Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds, J. Amer. Math. Soc. 24 (2011), no. 3, 603-648. With an appendix by Oh and Nimish Shah. MR 2784325, https://doi.org/10.1090/S0894-0347-2011-00691-7
  • [17] Peter D. Lax and Ralph S. Phillips, The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Funct. Anal. 46 (1982), no. 3, 280-350. MR 661875 (83j:10057), https://doi.org/10.1016/0022-1236(82)90050-7
  • [18] B. M. Levitan, Asymptotic formulas for the number of lattice points in Euclidean and Lobachevskiĭ spaces, Uspekhi Mat. Nauk 42 (1987), no. 3(255), 13-38, 255 (Russian). MR 896876 (88i:11066)
  • [19] J. Marklof and I. Vinogradov,
    Directions in hyperbolic lattices,
    arXiv:1409.3764, 2014.
  • [20] Peter Nicholls, A lattice point problem in hyperbolic space, Michigan Math. J. 30 (1983), no. 3, 273-287. MR 725781 (85f:11071), https://doi.org/10.1307/mmj/1029002905
  • [21] Hee Oh, Harmonic analysis, ergodic theory and counting for thin groups, Thin groups and superstrong approximation, Math. Sci. Res. Inst. Publ., vol. 61, Cambridge Univ. Press, Cambridge, 2014, pp. 179-210. MR 3220891
  • [22] S. J. Patterson, A lattice-point problem in hyperbolic space, Mathematika 22 (1975), no. 1, 81-88. MR 0422160 (54 #10152)
  • [23] Ralph Phillips and Zeév Rudnick, The circle problem in the hyperbolic plane, J. Funct. Anal. 121 (1994), no. 1, 78-116. MR 1270589 (95d:11135), https://doi.org/10.1006/jfan.1994.1045
  • [24] John G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, vol. 149, Springer-Verlag, New York, 1994. MR 1299730 (95j:57011)
  • [25] M. S. Risager and A. Södergren,
    Angles in hyperbolic lattices: The pair correlation density,
    arXiv:1409.5683, 2014.
  • [26] Morten S. Risager and Jimi L. Truelsen, Distribution of angles in hyperbolic lattices, Q. J. Math. 61 (2010), no. 1, 117-133. MR 2592028 (2011i:11102), https://doi.org/10.1093/qmath/han033
  • [27] Akshay Venkatesh, Sparse equidistribution problems, period bounds and subconvexity, Ann. of Math. (2) 172 (2010), no. 2, 989-1094. MR 2680486 (2012k:11061), https://doi.org/10.4007/annals.2010.172.989

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11N45, 11P21, 20H10

Retrieve articles in all journals with MSC (2010): 11N45, 11P21, 20H10


Additional Information

Morten S. Risager
Affiliation: Department of Mathematical Sciences, University of Copenhagen, Universitet- sparken 5, 2100 Copenhagen, Denmark
Email: risager@math.ku.dk

Anders Södergren
Affiliation: Department of Mathematical Sciences, University of Copenhagen, Universitet- sparken 5, 2100 Copenhagen, Denmark
Email: sodergren@math.ku.dk

DOI: https://doi.org/10.1090/tran/6770
Keywords: Pair correlation, hyperbolic $n$-space, hyperbolic lattice points
Received by editor(s): December 5, 2014
Received by editor(s) in revised form: December 11, 2014, and June 19, 2015
Published electronically: December 7, 2016
Additional Notes: The first author was supported by a Sapere Aude grant from The Danish Council for Independent Research (grant id:0602-02161B). The second author was supported by a grant from The Danish Council for Independent Research and FP7 Marie Curie Actions-COFUND (grant id: DFF-1325-00058).
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society