Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On modules of integral elements over finitely generated domains


Author: Khoa D. Nguyen
Journal: Trans. Amer. Math. Soc. 369 (2017), 3047-3066
MSC (2010): Primary 11D61; Secondary 11R99
DOI: https://doi.org/10.1090/tran/6732
Published electronically: August 18, 2016
MathSciNet review: 3605964
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is motivated by the results and questions of Jason P. Bell and Kevin G. Hare in 2009. Let $ \mathcal {O}$ be a finitely generated $ \mathbb{Z}$-algebra that is an integrally closed domain of characteristic zero. We investigate the following two problems:

(A)
Fix $ q$ and $ r$ that are integral over $ \mathcal {O}$ and describe all pairs $ (m,n)\in \mathbb{N}^2$ such that $ \mathcal {O}[q^m]=\mathcal {O}[r^n]$.
(B)
Fix $ r$ that is integral over $ \mathcal {O}$ and describe all $ q$ such that $ \mathcal {O}[q]=\mathcal {O}[r]$.
In this paper, we solve Problem (A), present a solution of Problem (B) by Evertse and Győry, and explain their relation to the paper of Bell and Hare. In the following, $ c_1$ and $ c_2$ are effectively computable constants with a very mild dependence on $ \mathcal {O}$, $ q$, and $ r$. For (B), Evertse and Győry show that there are $ N\leq c_2$ elements $ s_1,\ldots ,s_N$ such that $ \mathcal {O}[s_i]=\mathcal {O}[r]$ for every $ i$, and for every $ q$ such that $ \mathcal {O}[q]=\mathcal {O}[r]$, we have $ q-us_i\in \mathcal {O}$ for some $ 1\leq i\leq N$ and $ u\in \mathcal {O}^{*}$. This immediately answers two questions about Pisot numbers by Bell and Hare. For (A), we show that except for some ``degenerate'' cases that can be explicitly described, there are at most $ c_1$ such pairs $ (m,n)$. This significantly strengthens some results of Bell and Hare. We also make some remarks on effectiveness and discuss further questions at the end of the paper.

References [Enhancements On Off] (What's this?)

  • [Bak75] Alan Baker, Transcendental number theory, Cambridge University Press, London-New York, 1975. MR 0422171 (54 #10163)
  • [BBM70] M. Bruckheimer, A. C. Bryan, and A. Muir, Groups which are the union of three subgroups, Amer. Math. Monthly 77 (1970), 52-57. MR 0255662 (41 #322)
  • [BC97] E. Bombieri and P. B. Cohen, Effective Diophantine approximation on $ \mathbf {G}_M$. II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), no. 2, 205-225. MR 1487954 (98m:11076)
  • [Ben01] Michael A. Bennett, On the representation of unity by binary cubic forms, Trans. Amer. Math. Soc. 353 (2001), no. 4, 1507-1534. MR 1806730 (2002i:11031), https://doi.org/10.1090/S0002-9947-00-02658-1
  • [BG06] Enrico Bombieri and Walter Gubler, Heights in Diophantine geometry, New Mathematical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006. MR 2216774 (2007a:11092)
  • [BH09] J. P. Bell and K. G. Hare, On $ \mathbb{Z}$-modules of algebraic integers, Canad. J. Math. 61 (2009), no. 2, 264-281. MR 2504015 (2010a:11205), https://doi.org/10.4153/CJM-2009-013-9
  • [BH12] Jason P. Bell and Kevin G. Hare, Corrigendum to ``On $ \mathbb{Z}$-modules of algebraic integers'' [MR 2504015], Canad. J. Math. 64 (2012), no. 2, 254-256. MR 2953199, https://doi.org/10.4153/CJM-2011-072-5
  • [Bom93] Enrico Bombieri, Effective Diophantine approximation on $ {\bf G}_m$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), no. 1, 61-89. MR 1215999 (94m:11086)
  • [BS96] F. Beukers and H. P. Schlickewei, The equation $ x+y=1$ in finitely generated groups, Acta Arith. 78 (1996), no. 2, 189-199. MR 1424539 (97k:11051)
  • [BW93] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62. MR 1234835 (94i:11050), https://doi.org/10.1515/crll.1993.442.19
  • [EG85] J.-H. Evertse and K. Győry, On unit equations and decomposable form equations, J. Reine Angew. Math. 358 (1985), 6-19. MR 797671 (86j:11027)
  • [EG13] Jan-Hendrik Evertse and Kálmán Győry, Effective results for unit equations over finitely generated integral domains, Math. Proc. Cambridge Philos. Soc. 154 (2013), no. 2, 351-380. MR 3021818, https://doi.org/10.1017/S0305004112000606
  • [ES02] Jan-Hendrik Evertse and Hans Peter Schlickewei, A quantitative version of the absolute subspace theorem, J. Reine Angew. Math. 548 (2002), 21-127. MR 1915209 (2003f:11099), https://doi.org/10.1515/crll.2002.060
  • [ESS02] J.-H. Evertse, H. P. Schlickewei, and W. M. Schmidt, Linear equations in variables which lie in a multiplicative group, Ann. of Math. (2) 155 (2002), no. 3, 807-836. MR 1923966 (2003f:11037), https://doi.org/10.2307/3062133
  • [GY06] Kálmán Győry and Kunrui Yu, Bounds for the solutions of $ S$-unit equations and decomposable form equations, Acta Arith. 123 (2006), no. 1, 9-41. MR 2232500 (2007d:11032), https://doi.org/10.4064/aa123-1-2
  • [Győ84] K. Győry, Effective finiteness theorems for polynomials with given discriminant and integral elements with given discriminant over finitely domains, J. Reine Angew. Math. 346 (1984), 54-100. MR 727397 (86b:11064a); Correction to the paper, J. Reine Angew. Math. 347 (1984), 167. MR0733051, https://doi.org/10.1515/crll.1984.346.54
  • [Lan83] Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. MR 715605 (85j:11005)
  • [Mat80] Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344 (82i:13003)
  • [Rib01] Paulo Ribenboim, Classical theory of algebraic numbers, Universitext, Springer-Verlag, New York, 2001. MR 1821363 (2002e:11001)
  • [Roq58] Peter Roquette, Einheiten und Divisorklassen in endlich erzeugbaren Körpern, Jber. Deutsch. Math. Verein 60 (1957), no. Abt. 1, 1-21 (German). MR 0104652 (21 #3405)
  • [Sch72] Wolfgang M. Schmidt, Norm form equations, Ann. of Math. (2) 96 (1972), 526-551. MR 0314761 (47 #3313)
  • [Sch89] Wolfgang M. Schmidt, The subspace theorem in Diophantine approximations, Compositio Math. 69 (1989), no. 2, 121-173. MR 984633 (90d:11084)
  • [Yu07] Kunrui Yu, $ p$-adic logarithmic forms and group varieties. III, Forum Math. 19 (2007), no. 2, 187-280. MR 2313840 (2008c:11108), https://doi.org/10.1515/FORUM.2007.009

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11D61, 11R99

Retrieve articles in all journals with MSC (2010): 11D61, 11R99


Additional Information

Khoa D. Nguyen
Affiliation: Department of Mathematics, University of British Columbia, and Pacific Institute for the Mathematical Sciences, Vancouver, British Columbia V6T 1Z2, Canada
Email: dknguyen@math.ubc.ca

DOI: https://doi.org/10.1090/tran/6732
Keywords: Unit equations over finitely generated domains, uniform bounds, effective methods
Received by editor(s): December 22, 2014
Received by editor(s) in revised form: April 21, 2015
Published electronically: August 18, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society