Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Normalization and solvability of vector fields near trapped orbits


Author: Abdelhamid Meziani
Journal: Trans. Amer. Math. Soc. 369 (2017), 3325-3354
MSC (2010): Primary 35F05, 34K17; Secondary 35A01, 35A24, 35F35
DOI: https://doi.org/10.1090/tran/6741
Published electronically: September 1, 2016
MathSciNet review: 3605973
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the solvability and normalization, in the real analytic and smooth categories, of a class of vector fields in a neighborhood of an invariant torus. The vector fields are supposed to satisfy Siegel type conditions.


References [Enhancements On Off] (What's this?)

  • [1] V. I. Arnold, Geometrical methods in the theory of ordinary differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 250, Springer-Verlag, New York-Berlin, 1983. Translated from the Russian by Joseph Szücs; Translation edited by Mark Levi. MR 695786 (84d:58023)
  • [2] Shiferaw Berhanu, Paulo D. Cordaro, and Jorge Hounie, An introduction to involutive structures, New Mathematical Monographs, vol. 6, Cambridge University Press, Cambridge, 2008. MR 2397326 (2009b:32048)
  • [3] Shui-Nee Chow, Kening Lu, and Yun Qiu Shen, Normal form and linearization for quasiperiodic systems, Trans. Amer. Math. Soc. 331 (1992), no. 1, 361-376. MR 1076612 (92g:34048), https://doi.org/10.2307/2154013
  • [4] Paulo D. Cordaro and Xianghong Gong, Normalization of complex-valued planar vector fields which degenerate along a real curve, Adv. Math. 184 (2004), no. 1, 89-118. MR 2047850 (2005a:35004), https://doi.org/10.1016/S0001-8708(03)00139-7
  • [5] Freddy Dumortier, Jaume Llibre, and Joan C. Artés, Qualitative theory of planar differential systems, Universitext, Springer-Verlag, Berlin, 2006. MR 2256001 (2007f:34001)
  • [6] Lars Hörmander, Propagation of singularities and semiglobal existence theorems for (pseudo)differential operators of principal type, Ann. of Math. (2) 108 (1978), no. 3, 569-609. MR 512434 (81j:35110), https://doi.org/10.2307/1971189
  • [7] Jorge Hounie, A note on global solvability of vector fields, Proc. Amer. Math. Soc. 94 (1985), no. 1, 61-64. MR 781057 (86h:35032), https://doi.org/10.2307/2044952
  • [8] Abdelhamid Meziani, On planar elliptic structures with infinite type degeneracy, J. Funct. Anal. 179 (2001), no. 2, 333-373. MR 1809114 (2001k:35122), https://doi.org/10.1006/jfan.2000.3695
  • [9] Abdelhamid Meziani, Global solvability of real analytic complex vector fields in two variables, J. Differential Equations 251 (2011), no. 10, 2896-2931. MR 2831718 (2012g:35031), https://doi.org/10.1016/j.jde.2011.05.014
  • [10] Abdelhamid Meziani, On first and second order planar elliptic equations with degeneracies, Mem. Amer. Math. Soc. 217 (2012), no. 1019, vi+77. MR 2932923, https://doi.org/10.1090/S0065-9266-2011-00634-9
  • [11] L. Nirenberg and F. Treves, Solvability of a first order linear partial differential equation, Comm. Pure Appl. Math. 16 (1963), 331-351. MR 0163045 (29 #348)
  • [12] Robert Roussarie, Modèles locaux de champs et de formes, with an English summary, Astérisqûe, No. 30, Société Mathématique de France, Paris, 1975. MR 0440570 (55 #13444)
  • [13] V. S. Samovol, Linearization of systems of differential equations in the neighborhood of invariant toroidal manifolds, Trudy Moskov. Mat. Obshch. 38 (1979), 187-219 (Russian). MR 544939 (81j:34068)
  • [14] Shlomo Sternberg, On the structure of local homeomorphisms of euclidean $ n$-space. II, Amer. J. Math. 80 (1958), 623-631. MR 0096854 (20 #3336)
  • [15] Laurent Stolovitch, Smooth Gevrey normal forms of vector fields near a fixed point, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 1, 241-267 (English, with English and French summaries). MR 3097947, https://doi.org/10.5802/aif.2760
  • [16] François Trèves, Hypo-analytic structures: Local theory, Princeton Mathematical Series, vol. 40, Princeton University Press, Princeton, NJ, 1992. MR 1200459 (94e:35014)
  • [17] François Treves, On the solvability of vector fields with real linear coefficients, Proc. Amer. Math. Soc. 137 (2009), no. 12, 4209-4218. MR 2538582 (2010k:35060), https://doi.org/10.1090/S0002-9939-09-10033-3
  • [18] Hassler Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), no. 1, 63-89. MR 1501735, https://doi.org/10.2307/1989708

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35F05, 34K17, 35A01, 35A24, 35F35

Retrieve articles in all journals with MSC (2010): 35F05, 34K17, 35A01, 35A24, 35F35


Additional Information

Abdelhamid Meziani
Affiliation: Department of Mathematics, Florida International University, 11200 SW 8th Street, Miami, Florida 33199
Email: meziani@fiu.edu

DOI: https://doi.org/10.1090/tran/6741
Keywords: Vector field, normalization, solvability, Siegel condition, invariant torus
Received by editor(s): December 1, 2014
Received by editor(s) in revised form: April 30, 2015
Published electronically: September 1, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society