Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Velocity enhancement of reaction-diffusion fronts by a line of fast diffusion


Author: Laurent Dietrich
Journal: Trans. Amer. Math. Soc. 369 (2017), 3221-3252
MSC (2010): Primary 35H10, 35K57
DOI: https://doi.org/10.1090/tran/6776
Published electronically: September 13, 2016
MathSciNet review: 3605970
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the velocity of travelling waves of a reaction-diffusion system coupling a standard reaction-diffusion equation in a strip with a one-dimensional diffusion equation on a line. We show that it grows like the square root of the diffusivity on the line. This generalises a result of Berestycki, Roquejoffre and Rossi in the context of Fisher-KPP propagation, where the question could be reduced to algebraic computations. Thus, our work shows that this phenomenon is a robust one. The ratio between the asymptotic velocity and the square root of the diffusivity on the line is characterised as the unique admissible velocity for fronts of a hypoelliptic system, which is shown to admit a travelling wave profile.


References [Enhancements On Off] (What's this?)

  • [1] B. Audoly, H. Berestycki, and Y. Pomeau, Réaction diffusion en écoulement stationnaire rapide,
    C. R. Acad. Sci., Paris, Sér. II, Fasc. b, Méc. 328 (2000), no. 3, 255-262.
  • [2] Henri Berestycki and François Hamel, Front propagation in periodic excitable media, Comm. Pure Appl. Math. 55 (2002), no. 8, 949-1032. MR 1900178 (2003d:35139), https://doi.org/10.1002/cpa.3022
  • [3] Henri Berestycki and François Hamel, Gradient estimates for elliptic regularizations of semilinear parabolic and degenerate elliptic equations, Comm. Partial Differential Equations 30 (2005), no. 1-3, 139-156. MR 2131049 (2006a:35115), https://doi.org/10.1081/PDE-200044478
  • [4] Henri Berestycki, François Hamel, and Grégoire Nadin, Asymptotic spreading in heterogeneous diffusive excitable media, J. Funct. Anal. 255 (2008), no. 9, 2146-2189. MR 2473253 (2009k:35136), https://doi.org/10.1016/j.jfa.2008.06.030
  • [5] Henri Berestycki, François Hamel, and Nikolai Nadirashvili, Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena, Comm. Math. Phys. 253 (2005), no. 2, 451-480. MR 2140256 (2006b:35057), https://doi.org/10.1007/s00220-004-1201-9
  • [6] Henri Berestycki, François Hamel, and Nikolai Nadirashvili, The speed of propagation for KPP type problems. I. Periodic framework, J. Eur. Math. Soc. (JEMS) 7 (2005), no. 2, 173-213. MR 2127993 (2005k:35186), https://doi.org/10.4171/JEMS/26
  • [7] Henri Berestycki, François Hamel, and Nikolai Nadirashvili, The speed of propagation for KPP type problems. II. General domains, J. Amer. Math. Soc. 23 (2010), no. 1, 1-34. MR 2552247 (2010k:35260), https://doi.org/10.1090/S0894-0347-09-00633-X
  • [8] H. Berestycki, B. Larrouturou, and P.-L. Lions, Multi-dimensional travelling-wave solutions of a flame propagation model, Arch. Rational Mech. Anal. 111 (1990), no. 1, 33-49. MR 1051478 (91h:35148), https://doi.org/10.1007/BF00375699
  • [9] H. Berestycki and L. Nirenberg, Some qualitative properties of solutions of semilinear elliptic equations in cylindrical domains, Analysis, et cetera, Academic Press, Boston, MA, 1990, pp. 115-164. MR 1039342 (91i:35008)
  • [10] H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.) 22 (1991), no. 1, 1-37. MR 1159383 (93a:35048), https://doi.org/10.1007/BF01244896
  • [11] Henri Berestycki, Jean-Michel Roquejoffre, and Luca Rossi, The influence of a line with fast diffusion on Fisher-KPP propagation, J. Math. Biol. 66 (2013), no. 4-5, 743-766. MR 3020920, https://doi.org/10.1007/s00285-012-0604-z
  • [12] Henri Berestycki, Jean-Michel Roquejoffre, and Luca Rossi, The shape of expansion induced by a line with fast diffusion in Fisher-KPP equations, Comm. Math. Phys. 343 (2016), no. 1, 207-232. MR 3475665, https://doi.org/10.1007/s00220-015-2517-3
  • [13] F. Bouchut, Hypoelliptic regularity in kinetic equations, J. Math. Pures Appl. (9) 81 (2002), no. 11, 1135-1159 (English, with English and French summaries). MR 1949176 (2003k:82081), https://doi.org/10.1016/S0021-7824(02)01264-3
  • [14] Haim Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011. MR 2759829 (2012a:35002)
  • [15] Xavier Cabré, Anne-Charline Coulon, and Jean-Michel Roquejoffre, Propagation in Fisher-KPP type equations with fractional diffusion in periodic media, C. R. Math. Acad. Sci. Paris 350 (2012), no. 19-20, 885-890 (English, with English and French summaries). MR 2990897, https://doi.org/10.1016/j.crma.2012.10.007
  • [16] Xavier Cabré and Jean-Michel Roquejoffre, The influence of fractional diffusion in Fisher-KPP equations, Comm. Math. Phys. 320 (2013), no. 3, 679-722. MR 3057187, https://doi.org/10.1007/s00220-013-1682-5
  • [17] Guillemette Chapuisat and Emmanuel Grenier, Existence and nonexistence of traveling wave solutions for a bistable reaction-diffusion equation in an infinite cylinder whose diameter is suddenly increased, Comm. Partial Differential Equations 30 (2005), no. 10-12, 1805-1816. MR 2182312 (2006i:35178), https://doi.org/10.1080/03605300500300006
  • [18] Peter Constantin, Alexander Kiselev, Adam Oberman, and Leonid Ryzhik, Bulk burning rate in passive-reactive diffusion, Arch. Ration. Mech. Anal. 154 (2000), no. 1, 53-91. MR 1778121 (2001g:35119), https://doi.org/10.1007/s002050000090
  • [19] L. Dietrich,
    Accelaration de la propagation dans les équations de réaction-diffusion par une ligne de diffusion rapide,
    PhD thesis, Université de Toulouse, 2015.
  • [20] Laurent Dietrich, Existence of travelling waves for a reaction-diffusion system with a line of fast diffusion, Appl. Math. Res. Express. AMRX 2 (2015), 204-252. MR 3394265, https://doi.org/10.1093/amrx/abv002
  • [21] Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836 (31 #6062)
  • [22] Ju. Gertner and M. I. Freĭdlin, The propagation of concentration waves in periodic and random media, Dokl. Akad. Nauk SSSR 249 (1979), no. 3, 521-525 (Russian). MR 553200 (81d:80005)
  • [23] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364 (2001k:35004)
  • [24] Jong-Shenq Guo and François Hamel, Propagation and blocking in periodically hostile environments, Arch. Ration. Mech. Anal. 204 (2012), no. 3, 945-975. MR 2917126, https://doi.org/10.1007/s00205-012-0494-7
  • [25] François Hamel, Julien Fayard, and Lionel Roques, Spreading speeds in slowly oscillating environments, Bull. Math. Biol. 72 (2010), no. 5, 1166-1191. MR 2669940 (2011e:35175), https://doi.org/10.1007/s11538-009-9486-7
  • [26] François Hamel and Andrej Zlatoš, Speed-up of combustion fronts in shear flows, Math. Ann. 356 (2013), no. 3, 845-867. MR 3063899, https://doi.org/10.1007/s00208-012-0877-y
  • [27] Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. MR 0222474 (36 #5526)
  • [28] Ja. I. Kanel, Certain problems on equations in the theory of burning, Soviet Math. Dokl. 2 (1961), 48-51. MR 0117429 (22 #8208)
  • [29] Alexander Kiselev and Leonid Ryzhik, Enhancement of the traveling front speeds in reaction-diffusion equations with advection, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), no. 3, 309-358 (English, with English and French summaries). MR 1831659 (2002c:35155), https://doi.org/10.1016/S0294-1449(01)00068-3
  • [30] Antoine Mellet, Jean-Michel Roquejoffre, and Yannick Sire, Existence and asymptotics of fronts in non local combustion models, Commun. Math. Sci. 12 (2014), no. 1, 1-11. MR 3100891, https://doi.org/10.4310/CMS.2014.v12.n1.a1
  • [31] José M. Vega, On the uniqueness of multidimensional travelling fronts of some semilinear equations, J. Math. Anal. Appl. 177 (1993), no. 2, 481-490. MR 1231495 (94f:35040), https://doi.org/10.1006/jmaa.1993.1271

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35H10, 35K57

Retrieve articles in all journals with MSC (2010): 35H10, 35K57


Additional Information

Laurent Dietrich
Affiliation: Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, UPS IMT, F-31062 Toulouse Cedex 9, France
Address at time of publication: Department of Mathematical Sciences, Carnegie Mellon University, Wean Hall 7115, Pittsburgh, Pennsylvania 15213-3890
Email: ldi@cmu.edu

DOI: https://doi.org/10.1090/tran/6776
Received by editor(s): October 6, 2014
Received by editor(s) in revised form: April 29, 2015
Published electronically: September 13, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society