Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Variational equalities of entropy in nonuniformly hyperbolic systems


Authors: Chao Liang, Gang Liao, Wenxiang Sun and Xueting Tian
Journal: Trans. Amer. Math. Soc. 369 (2017), 3127-3156
MSC (2010): Primary 37B40, 37D25, 37C40
DOI: https://doi.org/10.1090/tran/6780
Published electronically: August 22, 2016
MathSciNet review: 3605966
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove that for a nonuniformly hyperbolic system $ (f,\widetilde {\Lambda })$ and for every nonempty, compact and connected subset $ K$ with the same hyperbolic rate in the space $ \mathcal {M}_{inv}(\widetilde {\Lambda },f)$ of invariant measures on $ \widetilde {\Lambda }$, the metric entropy and the topological entropy of basin $ G_K$ are related by the variational equality

$\displaystyle \inf \{h_\mu (f)\mid \mu \in K\}=h_{\mathrm {top}}(f,G_K).$

In particular, for every invariant (usually nonergodic) measure $ \mu \!\in \! \mathcal {M}_{inv}(\widetilde {\Lambda },f)$, we have

$\displaystyle h_\mu (f)=h_{\mathrm {top}}(f,G_{\mu }).$

We also verify that $ \mathcal {M}_{inv}(\widetilde {\Lambda },f)$ contains an open domain in the space of ergodic measures for diffeomorphisms with some hyperbolicity. As an application, the historical behavior is shown to occur robustly with a full positive entropy for diffeomorphisms beyond uniform hyperbolicity.

References [Enhancements On Off] (What's this?)

  • [1] Luis Barreira and Yakov B. Pesin, Lyapunov exponents and smooth ergodic theory, University Lecture Series, vol. 23, American Mathematical Society, Providence, RI, 2002. MR 1862379 (2003a:37040)
  • [2] Luis Barreira and Yakov Pesin, Nonuniform hyperbolicity: Dynamics of systems with nonzero Lyapunov exponents, Encyclopedia of Mathematics and its Applications, vol. 115, Cambridge University Press, Cambridge, 2007. MR 2348606 (2010c:37067)
  • [3] Christian Bonatti, Shaobo Gan, and Lan Wen, On the existence of non-trivial homoclinic classes, Ergodic Theory Dynam. Systems 27 (2007), no. 5, 1473-1508. MR 2358974 (2009d:37036), https://doi.org/10.1017/S0143385707000090
  • [4] Christian Bonatti and Marcelo Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. 115 (2000), 157-193. MR 1749677 (2001j:37063a), https://doi.org/10.1007/BF02810585
  • [5] Rufus Bowen, Markov partitions for Axiom $ {\rm A}$ diffeomorphisms, Amer. J. Math. 92 (1970), 725-747. MR 0277003 (43 #2740)
  • [6] Rufus Bowen, Periodic points and measures for Axiom $ A$ diffeomorphisms, Trans. Amer. Math. Soc. 154 (1971), 377-397. MR 0282372 (43 #8084)
  • [7] Rufus Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc. 184 (1973), 125-136. MR 0338317 (49 #3082)
  • [8] Mike Boyle and Tomasz Downarowicz, The entropy theory of symbolic extensions, Invent. Math. 156 (2004), no. 1, 119-161. MR 2047659 (2005d:37015), https://doi.org/10.1007/s00222-003-0335-2
  • [9] Jérôme Buzzi and Todd Fisher, Entropic stability beyond partial hyperbolicity, J. Mod. Dyn. 7 (2013), no. 4, 527-552. MR 3177771, https://doi.org/10.3934/jmd.2013.7.527
  • [10] J. Buzzi, T. Fisher, M. Sambarino, and C. Vásquez, Maximal entropy measures for certain partially hyperbolic, derived from Anosov systems, Ergodic Theory Dynam. Systems 32 (2012), no. 1, 63-79. MR 2873158 (2012k:37067), https://doi.org/10.1017/S0143385710000854
  • [11] Sylvain Crovisier, Birth of homoclinic intersections: a model for the central dynamics of partially hyperbolic systems, Ann. of Math. (2) 172 (2010), no. 3, 1641-1677 (English, with English and French summaries). MR 2726096 (2012k:37068), https://doi.org/10.4007/annals.2010.172.1641
  • [12] Xiongping Dai and Yunping Jiang, Distance entropy of dynamical systems on noncompact-phase spaces, Discrete Contin. Dyn. Syst. 20 (2008), no. 2, 313-333. MR 2358262 (2008h:37025)
  • [13] Yael Naim Dowker, The mean and transitive points of homeomorphisms, Ann. of Math. (2) 58 (1953), 123-133. MR 0054952 (14,1003c)
  • [14] Tomasz Downarowicz, Entropy structure, J. Anal. Math. 96 (2005), 57-116. MR 2177182 (2006g:37016), https://doi.org/10.1007/BF02787825
  • [15] Tomasz Downarowicz and Sheldon Newhouse, Symbolic extensions and smooth dynamical systems, Invent. Math. 160 (2005), no. 3, 453-499. MR 2178700 (2006j:37021), https://doi.org/10.1007/s00222-004-0413-0
  • [16] B. M. Gurevič, Topological entropy of a countable Markov chain, Dokl. Akad. Nauk SSSR 187 (1969), 715-718 (Russian). MR 0263162 (41 #7767)
  • [17] B. M. Gurevič, Shift entropy and Markov measures in the space of paths of a countable graph, Dokl. Akad. Nauk SSSR 192 (1970), 963-965 (Russian). MR 0268356 (42 #3254)
  • [18] Michihiro Hirayama, Periodic probability measures are dense in the set of invariant measures, Discrete Contin. Dyn. Syst. 9 (2003), no. 5, 1185-1192. MR 1974422 (2004a:37032), https://doi.org/10.3934/dcds.2003.9.1185
  • [19] A. Katok, Bernoulli diffeomorphisms on surfaces, Ann. of Math. (2) 110 (1979), no. 3, 529-547. MR 554383 (81a:28015), https://doi.org/10.2307/1971237
  • [20] Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374 (96c:58055)
  • [21] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 137-173. MR 573822 (81i:28022)
  • [22] F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula, Ann. of Math. (2) 122 (1985), no. 3, 509-539. MR 819556 (87i:58101a), https://doi.org/10.2307/1971328
  • [23] Chao Liang, Geng Liu, and Wenxiang Sun, Approximation properties on invariant measure and Oseledec splitting in non-uniformly hyperbolic systems, Trans. Amer. Math. Soc. 361 (2009), no. 3, 1543-1579. MR 2457408 (2009m:37085), https://doi.org/10.1090/S0002-9947-08-04630-8
  • [24] Chao Liang, Wenxiang Sun, and Xueting Tian, Ergodic properties of invariant measures for $ C^{1+\alpha }$ non-uniformly hyperbolic systems, Ergodic Theory Dynam. Systems 33 (2013), no. 2, 560-584. MR 3035298, https://doi.org/10.1017/S0143385711000940
  • [25] Elon Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math. 89 (1999), 227-262 (2000). MR 1793417 (2001j:37033)
  • [26] Elon Lindenstrauss and Benjamin Weiss, Mean topological dimension, Israel J. Math. 115 (2000), 1-24. MR 1749670 (2000m:37018), https://doi.org/10.1007/BF02810577
  • [27] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963), 130-141.
  • [28] Ricardo Mañé, Contributions to the stability conjecture, Topology 17 (1978), no. 4, 383-396. MR 516217 (84b:58061), https://doi.org/10.1016/0040-9383(78)90005-8
  • [29] Marc Mézard, Giorgio Parisi, and Miguel Angel Virasoro, Spin glass theory and beyond, World Scientific Lecture Notes in Physics, vol. 9, World Scientific Publishing Co., Inc., Teaneck, NJ, 1987. MR 1026102 (91k:82066)
  • [30] Sheldon E. Newhouse, Continuity properties of entropy, Ann. of Math. (2) 129 (1989), no. 2, 215-235. MR 986792 (90f:58108), https://doi.org/10.2307/1971492
  • [31] V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179-210 (Russian). MR 0240280 (39 #1629)
  • [32] J. Palis, Open questions leading to a global perspective in dynamics, Nonlinearity 21 (2008), no. 4, T37-T43. MR 2399817 (2009i:37003), https://doi.org/10.1088/0951-7715/21/4/T01
  • [33] Ja. B. Pesin, Characteristic Ljapunov exponents, and ergodic properties of smooth dynamical systems with invariant measure, Dokl. Akad. Nauk SSSR 226 (1976), no. 4, 774-777 (Russian). MR 0410804 (53 #14547)
  • [34] C.-E. Pfister and W. G. Sullivan, On the topological entropy of saturated sets, Ergodic Theory Dynam. Systems 27 (2007), no. 3, 929-956. MR 2322186 (2008f:37036), https://doi.org/10.1017/S0143385706000824
  • [35] Mark Pollicott, Lectures on ergodic theory and Pesin theory on compact manifolds, London Mathematical Society Lecture Note Series, vol. 180, Cambridge University Press, Cambridge, 1993. MR 1215938 (94k:58080)
  • [36] Enrique R. Pujals and Martín Sambarino, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. of Math. (2) 151 (2000), no. 3, 961-1023. MR 1779562 (2001m:37057), https://doi.org/10.2307/121127
  • [37] David Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat. 9 (1978), no. 1, 83-87. MR 516310 (80f:58026), https://doi.org/10.1007/BF02584795
  • [38] David Ruelle, Historical behaviour in smooth dynamical systems, Global analysis of dynamical systems, Inst. Phys., Bristol, 2001, pp. 63-66. MR 1858471
  • [39] Karl Sigmund, Generic properties of invariant measures for Axiom $ {\rm A}$diffeomorphisms, Invent. Math. 11 (1970), 99-109. MR 0286135 (44 #3349)
  • [40] Ja. G. Sinaĭ, Construction of Markov partitionings, Funkcional. Anal. i Priložen. 2 (1968), no. 3, 70-80 (Loose errata) (Russian). MR 0250352 (40 #3591)
  • [41] Stephen Smale, Diffeomorphisms with many periodic points, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 63-80. MR 0182020 (31 #6244)
  • [42] Floris Takens, Orbits with historic behaviour, or non-existence of averages, Nonlinearity 21 (2008), no. 3, T33-T36. MR 2396607 (2009a:37043), https://doi.org/10.1088/0951-7715/21/3/T02
  • [43] Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108 (84e:28017)
  • [44] Zhenqi Wang and Wenxiang Sun, Lyapunov exponents of hyperbolic measures and hyperbolic periodic orbits, Trans. Amer. Math. Soc. 362 (2010), no. 8, 4267-4282. MR 2608406 (2011m:37030), https://doi.org/10.1090/S0002-9947-10-04947-0

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 37B40, 37D25, 37C40

Retrieve articles in all journals with MSC (2010): 37B40, 37D25, 37C40


Additional Information

Chao Liang
Affiliation: Department of Applied Mathematics, The Central University of Finance and Economics, Beijing 100081, People’s Republic of China
Email: chaol@cufe.edu.cn

Gang Liao
Affiliation: School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
Address at time of publication: School of Mathematical Sciences, Soochow University, Suzhou 215006, People’s Republic of China
Email: liaogang@math.pku.edu.cn, lg@suda.edu.cn

Wenxiang Sun
Affiliation: School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
Email: sunwx@math.pku.edu.cn

Xueting Tian
Affiliation: School of Mathematical Sciences, Fudan University, Shanghai 200433, People’s Republic of China
Email: xuetingtian@fudan.edu.cn

DOI: https://doi.org/10.1090/tran/6780
Keywords: Metric entropy, periodic points, weak shadowing property
Received by editor(s): September 3, 2013
Received by editor(s) in revised form: April 23, 2015
Published electronically: August 22, 2016
Additional Notes: The first author was supported by NNSFC(#11471344) and Beijing Higher Education Young Elite Teacher Project (YETP0986)
The second author is the corresponding author
The third author was supported by NNSFC (#11231001)
The fourth author was supported by NNSFC (#11301088)
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society