Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Large deviations for systems with non-uniform structure


Authors: Vaughn Climenhaga, Daniel J. Thompson and Kenichiro Yamamoto
Journal: Trans. Amer. Math. Soc. 369 (2017), 4167-4192
MSC (2010): Primary 37A50, 60F10, 37D35, 37D25, 37B10
DOI: https://doi.org/10.1090/tran/6786
Published electronically: January 9, 2017
MathSciNet review: 3624405
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We use a weak Gibbs property and a weak form of specification to derive level-2 large deviations principles for symbolic systems equipped with a large class of reference measures. This has applications to a broad class of symbolic systems, including $ \beta $-shifts, $ S$-gap shifts, and their factors. A crucial step in our approach is to prove a `horseshoe theorem' for these systems.


References [Enhancements On Off] (What's this?)

  • [1] V. Araújo and M. J. Pacifico, Large deviations for non-uniformly expanding maps, J. Stat. Phys. 125 (2006), no. 2, 415-457. MR 2270016 (2008h:37033), https://doi.org/10.1007/s10955-006-9183-y
  • [2] Simon Baker and Andrei E. Ghenciu, Dynamical properties of $ S$-gap shifts and other shift spaces, J. Math. Anal. Appl. 430 (2015), no. 2, 633-647. MR 3351972, https://doi.org/10.1016/j.jmaa.2015.04.092
  • [3] Anne Bertrand, Specification, synchronisation, average length, Coding theory and applications (Cachan, 1986) Lecture Notes in Comput. Sci., vol. 311, Springer, Berlin, 1988, pp. 86-95 (English, with French summary). MR 960710 (89i:94022), https://doi.org/10.1007/3-540-19368-5_9
  • [4] Anne Bertrand-Mathis, Développement en base $ \theta $; répartition modulo un de la suite $ (x\theta ^n)_{n\geq 0}$; langages codés et $ \theta $-shift, Bull. Soc. Math. France 114 (1986), no. 3, 271-323 (French, with English summary). MR 878240 (88e:11067)
  • [5] Yong Moo Chung, Large deviations on Markov towers, Nonlinearity 24 (2011), no. 4, 1229-1252. MR 2776118, https://doi.org/10.1088/0951-7715/24/4/011
  • [6] Yong Moo Chung and Hiroki Takahasi, Large deviation principle for Benedicks-Carleson quadratic maps, Comm. Math. Phys. 315 (2012), no. 3, 803-826. MR 2981814, https://doi.org/10.1007/s00220-012-1540-x
  • [7] V. Climenhaga, Specification and towers in shift spaces, preprint (2015), arXiv:1502.00931v1.
  • [8] Vaughn Climenhaga and Daniel J. Thompson, Intrinsic ergodicity beyond specification: $ \beta $-shifts, $ S$-gap shifts, and their factors, Israel J. Math. 192 (2012), no. 2, 785-817. MR 3009742, https://doi.org/10.1007/s11856-012-0052-x
  • [9] Vaughn Climenhaga and Daniel J. Thompson, Equilibrium states beyond specification and the Bowen property, J. Lond. Math. Soc. (2) 87 (2013), no. 2, 401-427. MR 3046278, https://doi.org/10.1112/jlms/jds054
  • [10] Vaughn Climenhaga and Daniel J. Thompson, Intrinsic ergodicity via obstruction entropies, Ergodic Theory Dynam. Systems 34 (2014), no. 6, 1816-1831. MR 3272773, https://doi.org/10.1017/etds.2013.16
  • [11] Vaughn Climenhaga and Daniel J. Thompson, Unique equilibrium states for flows and homeomorphisms with non-uniform structure, Adv. Math. 303 (2016), 745-799. MR 3552538, https://doi.org/10.1016/j.aim.2016.07.029
  • [12] Henri Comman and Juan Rivera-Letelier, Large deviation principles for non-uniformly hyperbolic rational maps, Ergodic Theory Dynam. Systems 31 (2011), no. 2, 321-349. MR 2776378 (2012c:37059), https://doi.org/10.1017/S0143385709001163
  • [13] Dawoud Ahmadi Dastjerdi and Somaye Jangjoo, Dynamics and topology of $ S$-gap shifts, Topology Appl. 159 (2012), no. 10-11, 2654-2661. MR 2923435, https://doi.org/10.1016/j.topol.2012.04.002
  • [14] M. Denker, Large deviation and the pressure function, Transactions of the 11th Prague Conference on Information Theory, Statistical Decision Functions, Prague, 1990, Academia Publ. House of the Czechoslovak Acad. of Science, 1992, pp. 21-33.
  • [15] A. Eizenberg, Y. Kifer, and B. Weiss, Large deviations for $ {\bf Z}^d$-actions, Comm. Math. Phys. 164 (1994), no. 3, 433-454. MR 1291239 (95k:60071)
  • [16] Richard S. Ellis, Entropy, large deviations, and statistical mechanics, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 271, Springer-Verlag, New York, 1985. MR 793553 (87d:82008)
  • [17] Richard S. Ellis, The theory of large deviations and applications to statistical mechanics, Long-range interacting systems, Oxford Univ. Press, Oxford, 2010, pp. 13, 228-277. MR 2759544 (2012e:60078)
  • [18] Hans Föllmer and Steven Orey, Large deviations for the empirical field of a Gibbs measure, Ann. Probab. 16 (1988), no. 3, 961-977. MR 942749 (89i:60063)
  • [19] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 137-173. MR 573822 (81i:28022)
  • [20] Gerhard Keller and Tomasz Nowicki, Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps, Comm. Math. Phys. 149 (1992), no. 1, 31-69. MR 1182410 (93i:58123)
  • [21] Yuri Kifer, Large deviations in dynamical systems and stochastic processes, Trans. Amer. Math. Soc. 321 (1990), no. 2, 505-524. MR 1025756 (91e:60091), https://doi.org/10.2307/2001571
  • [22] Dominik Kwietniak, Piotr Oprocha, and Michał Rams, On entropy of dynamical systems with almost specification, Israel J. Math. 213 (2016), no. 1, 475-503. MR 3509480, https://doi.org/10.1007/s11856-016-1339-0
  • [23] Douglas Lind and Brian Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995. MR 1369092 (97a:58050)
  • [24] Artur O. Lopes, Entropy and large deviation, Nonlinearity 3 (1990), no. 2, 527-546. MR 1054587 (91m:58092)
  • [25] Ian Melbourne, Large and moderate deviations for slowly mixing dynamical systems, Proc. Amer. Math. Soc. 137 (2009), no. 5, 1735-1741. MR 2470832 (2009m:37087), https://doi.org/10.1090/S0002-9939-08-09751-7
  • [26] Ian Melbourne and Matthew Nicol, Large deviations for nonuniformly hyperbolic systems, Trans. Amer. Math. Soc. 360 (2008), no. 12, 6661-6676. MR 2434305 (2009m:37086), https://doi.org/10.1090/S0002-9947-08-04520-0
  • [27] Steven Orey and Stephan Pelikan, Large deviation principles for stationary processes, Ann. Probab. 16 (1988), no. 4, 1481-1495. MR 958198 (89j:60044)
  • [28] Steven Orey and Stephan Pelikan, Deviations of trajectory averages and the defect in Pesin's formula for Anosov diffeomorphisms, Trans. Amer. Math. Soc. 315 (1989), no. 2, 741-753. MR 935534 (90a:60057), https://doi.org/10.2307/2001304
  • [29] C.-E. Pfister and W. G. Sullivan, Large deviations estimates for dynamical systems without the specification property. Applications to the $ \beta $-shifts, Nonlinearity 18 (2005), no. 1, 237-261. MR 2109476 (2005h:37015), https://doi.org/10.1088/0951-7715/18/1/013
  • [30] C.-E. Pfister and W. G. Sullivan, On the topological entropy of saturated sets, Ergodic Theory Dynam. Systems 27 (2007), no. 3, 929-956. MR 2322186 (2008f:37036), https://doi.org/10.1017/S0143385706000824
  • [31] Mark Pollicott and Richard Sharp, Large deviations for intermittent maps, Nonlinearity 22 (2009), no. 9, 2079-2092. MR 2534293 (2010m:60101), https://doi.org/10.1088/0951-7715/22/9/001
  • [32] Mark Pollicott, Richard Sharp, and Michiko Yuri, Large deviations for maps with indifferent fixed points, Nonlinearity 11 (1998), no. 4, 1173-1184. MR 1632614 (99j:58131), https://doi.org/10.1088/0951-7715/11/4/023
  • [33] Luc Rey-Bellet and Lai-Sang Young, Large deviations in non-uniformly hyperbolic dynamical systems, Ergodic Theory Dynam. Systems 28 (2008), no. 2, 587-612. MR 2408394 (2009c:37029), https://doi.org/10.1017/S0143385707000478
  • [34] Yōichirō Takahashi, Entropy functional (free energy) for dynamical systems and their random perturbations, Stochastic analysis (Katata/Kyoto, 1982) North-Holland Math. Library, vol. 32, North-Holland, Amsterdam, 1984, pp. 437-467. MR 780769 (86m:58089), https://doi.org/10.1016/S0924-6509(08)70404-5
  • [35] Yōichirō Takahashi, Two aspects of large deviation theory for large time, Probabilistic methods in mathematical physics (Katata/Kyoto, 1985), Academic Press, Boston, MA, 1987, pp. 363-384. MR 933831 (89f:28046)
  • [36] Paulo Varandas, Non-uniform specification and large deviations for weak Gibbs measures, J. Stat. Phys. 146 (2012), no. 2, 330-358. MR 2873016, https://doi.org/10.1007/s10955-011-0392-7
  • [37] Peter Walters, Equilibrium states for $ \beta $-transformations and related transformations, Math. Z. 159 (1978), no. 1, 65-88. MR 0466492 (57 #6370)
  • [38] Kenichiro Yamamoto, On the weaker forms of the specification property and their applications, Proc. Amer. Math. Soc. 137 (2009), no. 11, 3807-3814. MR 2529890 (2010f:37027), https://doi.org/10.1090/S0002-9939-09-09937-7
  • [39] Lai-Sang Young, Large deviations in dynamical systems, Trans. Amer. Math. Soc. 318 (1990), no. 2, 525-543. MR 975689, https://doi.org/10.2307/2001318

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 37A50, 60F10, 37D35, 37D25, 37B10

Retrieve articles in all journals with MSC (2010): 37A50, 60F10, 37D35, 37D25, 37B10


Additional Information

Vaughn Climenhaga
Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77204
Email: climenha@math.uh.edu

Daniel J. Thompson
Affiliation: Department of Mathematics, The Ohio State University, 100 Math Tower, 231 West 18th Avenue, Columbus, Ohio 43210
Email: thompson@math.osu.edu

Kenichiro Yamamoto
Affiliation: Department of General Education, Nagaoka University of Technology, Niigata 940-2188, Japan
Email: k_yamamoto@vos.nagaokaut.ac.jp

DOI: https://doi.org/10.1090/tran/6786
Received by editor(s): April 19, 2013
Received by editor(s) in revised form: June 12, 2015
Published electronically: January 9, 2017
Additional Notes: The first author was partially supported by NSF grant DMS-1362838
The second author was partially supported by NSF grants DMS-$1101576$ and DMS-$1259311$
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society