Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Minimal surfaces in finite volume noncompact hyperbolic $ 3$-manifolds


Authors: Pascal Collin, Laurent Hauswirth, Laurent Mazet and Harold Rosenberg
Journal: Trans. Amer. Math. Soc. 369 (2017), 4293-4309
MSC (2010): Primary 53A10
DOI: https://doi.org/10.1090/tran/6859
Published electronically: February 23, 2017
MathSciNet review: 3624410
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove there exists a compact embedded minimal surface in a complete finite volume hyperbolic $ 3$-manifold $ \mathcal {N}$. We also obtain a least area, incompressible, properly embedded, finite topology, $ 2$-sided surface. We prove a properly embedded minimal surface of bounded curvature has finite topology. This determines its asymptotic behavior. Some rigidity theorems are obtained.


References [Enhancements On Off] (What's this?)

  • [1] Colin C. Adams, Thrice-punctured spheres in hyperbolic $ 3$-manifolds, Trans. Amer. Math. Soc. 287 (1985), no. 2, 645-656. MR 768730, https://doi.org/10.2307/1999666
  • [2] Michael T. Anderson, Complete minimal hypersurfaces in hyperbolic $ n$-manifolds, Comment. Math. Helv. 58 (1983), no. 2, 264-290. MR 705537, https://doi.org/10.1007/BF02564636
  • [3] Riccardo Benedetti and Carlo Petronio, Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 1992. MR 1219310
  • [4] Tobias H. Colding and Camillo De Lellis, The min-max construction of minimal surfaces, Surveys in differential geometry, Vol. VIII (Boston, MA, 2002) Surv. Differ. Geom., VIII, Int. Press, Somerville, MA, 2003, pp. 75-107. MR 2039986, https://doi.org/10.4310/SDG.2003.v8.n1.a3
  • [5] Pascal Collin, Laurent Hauswirth, and Harold Rosenberg,
    Minimal surfaces in finite volume hyperbolic $ 3$-manifolds $ {N}$ and in $ {M}\times \mathbb{S}^1$, $ {M}$ a finite area hyperbolic surface, to appear in Amer. J. Math.
  • [6] George K. Francis, A topological picturebook, Springer-Verlag, New York, 1987. MR 880519
  • [7] H. Gieseking,
    Analytische Untersuchungen Uber Topologische Gruppen,
    PhD thesis, Muenster, 1912.
  • [8] Joel Hass, Acylindrical surfaces in $ 3$-manifolds, Michigan Math. J. 42 (1995), no. 2, 357-365. MR 1342495, https://doi.org/10.1307/mmj/1029005233
  • [9] Joel Hass, J. Hyam Rubinstein, and Shicheng Wang, Boundary slopes of immersed surfaces in 3-manifolds, J. Differential Geom. 52 (1999), no. 2, 303-325. MR 1758298
  • [10] Joel Hass and Peter Scott, The existence of least area surfaces in $ 3$-manifolds, Trans. Amer. Math. Soc. 310 (1988), no. 1, 87-114. MR 965747, https://doi.org/10.2307/2001111
  • [11] John Hempel, 3-manifolds, AMS Chelsea Publishing, Providence, RI, 2004. Reprint of the 1976 original. MR 2098385
  • [12] William H. Meeks III and Joaquín Pérez, A survey on classical minimal surface theory, University Lecture Series, vol. 60, American Mathematical Society, Providence, RI, 2012. MR 3012474
  • [13] Jon T. Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds, Bull. Amer. Math. Soc. 82 (1976), no. 3, 503-504. MR 0405219
  • [14] Konrad Polthier, New periodic minimal surfaces in $ H^3$, Workshop on Theoretical and Numerical Aspects of Geometric Variational Problems (Canberra, 1990) Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 26, Austral. Nat. Univ., Canberra, 1991, pp. 201-210. MR 1139040
  • [15] Robert Riley, A personal account of the discovery of hyperbolic structures on some knot complements, Expo. Math. 31 (2013), no. 2, 104-115. MR 3057120, https://doi.org/10.1016/j.exmath.2013.01.003
  • [16] Harold Rosenberg, Rabah Souam, and Eric Toubiana, General curvature estimates for stable $ H$-surfaces in 3-manifolds and applications, J. Differential Geom. 84 (2010), no. 3, 623-648. MR 2669367
  • [17] Daniel Ruberman, Mutation and volumes of knots in $ S^3$, Invent. Math. 90 (1987), no. 1, 189-215. MR 906585, https://doi.org/10.1007/BF01389038
  • [18] Alan H. Schoen,
    Infinite periodic minimal surfaces without self-intersections,
    NASA technical note, D-5 541, 1970.
  • [19] Leon Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. MR 756417
  • [20] William P. Thurston,
    The geometry and topology of three-dimensional,
    Princeton University lecture notes, 1979.
  • [21] William P. Thurston, Three-dimensional geometry and topology. Vol. 1, edited by Silvio Levy, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. MR 1435975
  • [22] Karen K. Uhlenbeck, Closed minimal surfaces in hyperbolic $ 3$-manifolds, Seminar on minimal submanifolds, Ann. of Math. Stud., vol. 103, Princeton Univ. Press, Princeton, NJ, 1983, pp. 147-168. MR 795233

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53A10

Retrieve articles in all journals with MSC (2010): 53A10


Additional Information

Pascal Collin
Affiliation: Institut de mathematiques de Toulouse, Université Paul Sabatier, 118, route de Narbonne, F-31062 Toulouse cedex, France
Email: collin@math.ups-tlse.fr

Laurent Hauswirth
Affiliation: Université Paris-Est, LAMA (UMR 8050), UPEM, UPEC, CNRS, F-77454, Marne-la-Vallee, France
Email: hauswirth@univ-mlv.fr

Laurent Mazet
Affiliation: Université Paris-Est, LAMA (UMR 8050), UPEC, UPEM, CNRS, 61, avenue du Général de Gaulle, F-94010 Créteil cedex, France
Email: laurent.mazet@math.cnrs.fr

Harold Rosenberg
Affiliation: Instituto Nacional de Matematica Pura e Aplicada (IMPA), Estrada Dona Castorina 110, 22460-320, Rio de Janeiro-RJ, Brazil
Email: rosen@impa.br

DOI: https://doi.org/10.1090/tran/6859
Received by editor(s): August 19, 2015
Received by editor(s) in revised form: September 19, 2015
Published electronically: February 23, 2017
Additional Notes: The authors were partially supported by grant ANR-11-IS01-0002.
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society