Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Feller property for graphs


Author: Radosław K. Wojciechowski
Journal: Trans. Amer. Math. Soc. 369 (2017), 4415-4431
MSC (2010): Primary 39A12, 47B39, 60J27
DOI: https://doi.org/10.1090/tran/6901
Published electronically: January 9, 2017
MathSciNet review: 3624415
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Feller property concerns the preservation of the space of functions vanishing at infinity by the semigroup generated by an operator. We study this property in the case of the Laplacian on infinite graphs with arbitrary edge weights and vertex measures. In particular, we give conditions for the Feller property involving curvature-type quantities for general graphs, characterize the property in the case of model graphs and give some comparison results to the model case.


References [Enhancements On Off] (What's this?)

  • [1] Robert Azencott, Behavior of diffusion semi-groups at infinity, Bull. Soc. Math. France 102 (1974), 193-240. MR 0356254
  • [2] E. B. Davies, Heat kernel bounds, conservation of probability and the Feller property, J. Anal. Math. 58 (1992), 99-119. Festschrift on the occasion of the 70th birthday of Shmuel Agmon. MR 1226938, https://doi.org/10.1007/BF02790359
  • [3] Jozef Dodziuk, Maximum principle for parabolic inequalities and the heat flow on open manifolds, Indiana Univ. Math. J. 32 (1983), no. 5, 703-716. MR 711862, https://doi.org/10.1512/iumj.1983.32.32046
  • [4] Józef Dodziuk, Elliptic operators on infinite graphs, Analysis, geometry and topology of elliptic operators, World Sci. Publ., Hackensack, NJ, 2006, pp. 353-368. MR 2246774
  • [5] Józef Dodziuk and Varghese Mathai, Kato's inequality and asymptotic spectral properties for discrete magnetic Laplacians, The ubiquitous heat kernel, Contemp. Math., vol. 398, Amer. Math. Soc., Providence, RI, 2006, pp. 69-81. MR 2218014, https://doi.org/10.1090/conm/398/07484
  • [6] William Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math. (2) 55 (1952), 468-519. MR 0047886
  • [7] William Feller, The general diffusion operator and positivity preserving semi-groups in one dimension, Ann. of Math. (2) 60 (1954), 417-436. MR 0065809
  • [8] Matthew Folz, Volume growth and stochastic completeness of graphs, Trans. Amer. Math. Soc. 366 (2014), no. 4, 2089-2119. MR 3152724, https://doi.org/10.1090/S0002-9947-2013-05930-2
  • [9] Agelos Georgakopoulos, Sebastian Haeseler, Matthias Keller, Daniel Lenz, and Radosław K. Wojciechowski, Graphs of finite measure, J. Math. Pures Appl. (9) 103 (2015), no. 5, 1093-1131 (English, with English and French summaries). MR 3333051, https://doi.org/10.1016/j.matpur.2014.10.006
  • [10] Alexander Grigor'yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 2, 135-249. MR 1659871 (99k:58195), https://doi.org/10.1090/S0273-0979-99-00776-4
  • [11] Alexander Grigor'yan, Xueping Huang, and Jun Masamune, On stochastic completeness of jump processes, Math. Z. 271 (2012), no. 3-4, 1211-1239. MR 2945605, https://doi.org/10.1007/s00209-011-0911-x
  • [12] Sebastian Haeseler, Matthias Keller, Daniel Lenz, and Radosław Wojciechowski, Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions, J. Spectr. Theory 2 (2012), no. 4, 397-432. MR 2947294
  • [13] Pei Hsu, Heat semigroup on a complete Riemannian manifold, Ann. Probab. 17 (1989), no. 3, 1248-1254. MR 1009455
  • [14] Xueping Huang, Stochastic incompleteness for graphs and weak Omori-Yau maximum principle, J. Math. Anal. Appl. 379 (2011), no. 2, 764-782. MR 2784357, https://doi.org/10.1016/j.jmaa.2011.02.009
  • [15] Xueping Huang, On stochastic completeness of weighted graphs, 2011. Thesis (Ph.D.)-Bielefeld University.
  • [16] Xueping Huang, Escape rate of Markov chains on infinite graphs, J. Theoret. Probab. 27 (2014), no. 2, 634-682. MR 3195830, https://doi.org/10.1007/s10959-012-0456-x
  • [17] Xueping Huang, A note on the volume growth criterion for stochastic completeness of weighted graphs, Potential Anal. 40 (2014), no. 2, 117-142. MR 3152158, https://doi.org/10.1007/s11118-013-9342-0
  • [18] Xueping Huang, Matthias Keller, Jun Masamune, and Radosław K. Wojciechowski, A note on self-adjoint extensions of the Laplacian on weighted graphs, J. Funct. Anal. 265 (2013), no. 8, 1556-1578. MR 3079229, https://doi.org/10.1016/j.jfa.2013.06.004
  • [19] Leon Karp and Peter Li, The heat equation on complete Riemannian manifolds, available at math.uci.edu/~pli/heat.pdf.
  • [20] M. Keller and D. Lenz, Unbounded Laplacians on graphs: basic spectral properties and the heat equation, Math. Model. Nat. Phenom. 5 (2010), no. 4, 198-224. MR 2662456, https://doi.org/10.1051/mmnp/20105409
  • [21] Matthias Keller and Daniel Lenz, Dirichlet forms and stochastic completeness of graphs and subgraphs, J. Reine Angew. Math. 666 (2012), 189-223. MR 2920886, https://doi.org/10.1515/CRELLE.2011.122
  • [22] Matthias Keller, Daniel Lenz, Marcel Schmidt, and Radosław K. Wojciechowski, Note on uniformly transient graphs (2014), available at http://arxiv.org/abs/1412.0815.
  • [23] Matthias Keller, Daniel Lenz, and Radosław K. Wojciechowski, Volume growth, spectrum and stochastic completeness of infinite graphs, Math. Z. 274 (2013), no. 3-4, 905-932. MR 3078252, https://doi.org/10.1007/s00209-012-1101-1
  • [24] R. Z. Hasminskiĭ, Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations, Teor. Verojatnost. i Primenen. 5 (1960), 196-214 (Russian, with English summary). MR 0133871
  • [25] Stefano Pigola and Alberto G. Setti, The Feller property on Riemannian manifolds, J. Funct. Anal. 262 (2012), no. 5, 2481-2515. MR 2876412, https://doi.org/10.1016/j.jfa.2011.12.001
  • [26] Andreas Weber, Analysis of the physical Laplacian and the heat flow on a locally finite graph, J. Math. Anal. Appl. 370 (2010), no. 1, 146-158. MR 2651136, https://doi.org/10.1016/j.jmaa.2010.04.044
  • [27] Wolfgang Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, vol. 138, Cambridge University Press, Cambridge, 2000. MR 1743100
  • [28] Wolfgang Woess, Denumerable Markov chains, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2009. Generating functions, boundary theory, random walks on trees. MR 2548569
  • [29] Radoslaw Krzysztof Wojciechowski, Stochastic completeness of graphs, ProQuest LLC, Ann Arbor, MI, 2008. Thesis (Ph.D.)-City University of New York. MR 2711706
  • [30] Radosław K. Wojciechowski, Heat kernel and essential spectrum of infinite graphs, Indiana Univ. Math. J. 58 (2009), no. 3, 1419-1441. MR 2542093, https://doi.org/10.1512/iumj.2009.58.3575
  • [31] Radoslaw Krzysztof Wojciechowski, Stochastically incomplete manifolds and graphs, Random walks, boundaries and spectra, Progr. Probab., vol. 64, Birkhäuser/Springer Basel AG, Basel, 2011, pp. 163-179. MR 3051698, https://doi.org/10.1007/978-3-0346-0244-0_9
  • [32] Shing Tung Yau, On the heat kernel of a complete Riemannian manifold, J. Math. Pures Appl. (9) 57 (1978), no. 2, 191-201. MR 505904

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 39A12, 47B39, 60J27

Retrieve articles in all journals with MSC (2010): 39A12, 47B39, 60J27


Additional Information

Radosław K. Wojciechowski
Affiliation: Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016 – and – York College of the City University of New York, 94-20 Guy R. Brewer Boulevard, Jamaica, New York 11451
Email: rwojciechowski@gc.cuny.edu

DOI: https://doi.org/10.1090/tran/6901
Received by editor(s): December 19, 2014
Received by editor(s) in revised form: January 8, 2016, and January 12, 2016
Published electronically: January 9, 2017
Additional Notes: The author gratefully acknowledges financial support from PSC-CUNY Awards, jointly funded by the Professional Staff Congress and the City University of New York, and the Collaboration Grant for Mathematicians, funded by the Simons Foundation.
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society