Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Analytic characterizations of gaugeability for generalized Feynman-Kac functionals


Authors: Daehong Kim and Kazuhiro Kuwae
Journal: Trans. Amer. Math. Soc. 369 (2017), 4545-4596
MSC (2010): Primary 31C25, 60J45, 60J57; Secondary 35J10, 60J35, 60J25
DOI: https://doi.org/10.1090/tran/6702
Published electronically: November 16, 2016
MathSciNet review: 3632543
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give analytic characterizations of gaugeability for generalized Feynman-Kac functionals including continuous additive functional of zero quadratic variation in the framework of symmetric Markov processes. Our result improves the previous work on the analytic characterization due to Z.-Q. Chen (2003) even if we restrict ourselves to deal with non-local perturbations. We also prove that such a characterization is also equivalent to semi-conditional gaugeability and to the subcriticality of the Schrödinger operator associated to our generalized Feynman-Kac semigroup under the conditional (semi-)Green-tightness of related measures.


References [Enhancements On Off] (What's this?)

  • [1] Zhen-Qing Chen, Gaugeability and conditional gaugeability, Trans. Amer. Math. Soc. 354 (2002), no. 11, 4639-4679 (electronic). MR 1926893, https://doi.org/10.1090/S0002-9947-02-03059-3
  • [2] Zhen-Qing Chen, Analytic characterization of conditional gaugeability for non-local Feynman-Kac transforms, J. Funct. Anal. 202 (2003), no. 1, 226-246. MR 1994771, https://doi.org/10.1016/S0022-1236(02)00096-4
  • [3] Zhen-Qing Chen, Uniform integrability of exponential martingales and spectral bounds of non-local Feynman-Kac semigroups, Stochastic analysis and applications to finance, Interdiscip. Math. Sci., vol. 13, World Sci. Publ., Hackensack, NJ, 2012, pp. 55-75. MR 2986841, https://doi.org/10.1142/9789814383585_0004
  • [4] Z.-Q. Chen, P. J. Fitzsimmons, K. Kuwae, and T.-S. Zhang, Stochastic calculus for symmetric Markov processes, Ann. Probab. 36 (2008), no. 3, 931-970. MR 2408579, https://doi.org/10.1214/07-AOP347
  • [5] Z.-Q. Chen, P. J. Fitzsimmons, K. Kuwae, and T.-S. Zhang, On general perturbations of symmetric Markov processes, J. Math. Pures Appl. (9) 92 (2009), no. 4, 363-374 (English, with English and French summaries). MR 2569183, https://doi.org/10.1016/j.matpur.2009.05.012
  • [6] Z.-Q. Chen, P. J. Fitzsimmons, M. Takeda, J. Ying, and T.-S. Zhang, Absolute continuity of symmetric Markov processes, Ann. Probab. 32 (2004), no. 3A, 2067-2098. MR 2073186, https://doi.org/10.1214/009117904000000432
  • [7] Zhen-Qing Chen and Masatoshi Fukushima, Symmetric Markov processes, time change, and boundary theory, London Mathematical Society Monographs Series, vol. 35, Princeton University Press, Princeton, NJ, 2012. MR 2849840
  • [8] Zhen-Qing Chen, Panki Kim, and Takashi Kumagai, Global heat kernel estimates for symmetric jump processes, Trans. Amer. Math. Soc. 363 (2011), no. 9, 5021-5055. MR 2806700, https://doi.org/10.1090/S0002-9947-2011-05408-5
  • [9] Zhen-Qing Chen, Panki Kim, and Renming Song, Global heat kernel estimate for relativistic stable processes in exterior open sets, J. Funct. Anal. 263 (2012), no. 2, 448-475. MR 2923420, https://doi.org/10.1016/j.jfa.2012.04.012
  • [10] Zhen-Qing Chen and Kazuhiro Kuwae, On doubly Feller property, Osaka J. Math. 46 (2009), no. 4, 909-930. MR 2604914
  • [11] Zhen-Qing Chen and Renming Song, General gauge and conditional gauge theorems, Ann. Probab. 30 (2002), no. 3, 1313-1339. MR 1920109, https://doi.org/10.1214/aop/1029867129
  • [12] Zhen-Qing Chen and Renming Song, Conditional gauge theorem for non-local Feynman-Kac transforms, Probab. Theory Related Fields 125 (2003), no. 1, 45-72. MR 1952456, https://doi.org/10.1007/s004400200219
  • [13] Zhen-Qing Chen and Renming Song, Drift transforms and Green function estimates for discontinuous processes, J. Funct. Anal. 201 (2003), no. 1, 262-281. MR 1986161, https://doi.org/10.1016/S0022-1236(03)00087-9
  • [14] Zhen-Qing Chen and Tu-Sheng Zhang, Girsanov and Feynman-Kac type transformations for symmetric Markov processes, Ann. Inst. H. Poincaré Probab. Statist. 38 (2002), no. 4, 475-505 (English, with English and French summaries). MR 1914937, https://doi.org/10.1016/S0246-0203(01)01086-X
  • [15] K. L. Chung, Doubly-Feller process with multiplicative functional, Seminar on stochastic processes, 1985 (Gainesville, Fla., 1985) Progr. Probab. Statist., vol. 12, Birkhäuser Boston, Boston, MA, 1986, pp. 63-78. MR 896735
  • [16] Kai Lai Chung and Zhong Xin Zhao, From Brownian motion to Schrödinger's equation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 312, Springer-Verlag, Berlin, 1995. MR 1329992
  • [17] Giacomo De Leva, Daehong Kim, and Kazuhiro Kuwae, $ L^p$-independence of spectral bounds of Feynman-Kac semigroups by continuous additive functionals, J. Funct. Anal. 259 (2010), no. 3, 690-730. MR 2644101, https://doi.org/10.1016/j.jfa.2010.01.017
  • [18] William Feller, The birth and death processes as diffusion processes, J. Math. Pures Appl. (9) 38 (1959), 301-345. MR 0112192
  • [19] P. J. Fitzsimmons, Absolute continuity of symmetric diffusions, Ann. Probab. 25 (1997), no. 1, 230-258. MR 1428508, https://doi.org/10.1214/aop/1024404287
  • [20] Bent Fuglede, The quasi topology associated with a countably subadditive set function, Ann. Inst. Fourier (Grenoble) 21 (1971), no. fasc. 1, 123-169 (English, with French summary). MR 0283158
  • [21] Masatoshi Fukushima, On semi-martingale characterizations of functionals of symmetric Markov processes, Electron. J. Probab. 4 (1999), no. 18, 32 pp. (electronic). MR 1741537, https://doi.org/10.1214/EJP.v4-55
  • [22] Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda, Dirichlet forms and symmetric Markov processes, Second revised and extended edition, de Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 2011. MR 2778606
  • [23] R. K. Getoor, Transience and recurrence of Markov processes, Seminar on Probability, XIV (Paris, 1978/1979) Lecture Notes in Math., vol. 784, Springer, Berlin, 1980, pp. 397-409. MR 580144
  • [24] Ira W. Herbst and Alan D. Sloan, Perturbation of translation invariant positivity preserving semigroups on $ L^{2}({\bf R}^{N})$, Trans. Amer. Math. Soc. 236 (1978), 325-360. MR 0470750
  • [25] Daehong Kim and Kazuhiro Kuwae, General analytic characterization of gaugeability for Feynman-Kac functionals, preprint, 2016.
  • [26] Daehong Kim, Kazuhiro Kuwae, and Yoshihiro Tawara, Large deviation principles for generalized Feynman-Kac functionals and its applications, Tohoku Math. J. (2) 68 (2016), no. 2, 161-197. MR 3514698
  • [27] Daehong Kim, Masayoshi Takeda, and Jiangang Ying, Some variational formulas on additive functionals of symmetric Markov chains, Proc. Amer. Math. Soc. 130 (2002), no. 7, 2115-2123. MR 1896048, https://doi.org/10.1090/S0002-9939-01-06308-0
  • [28] Kazuhiro Kuwae, Functional calculus for Dirichlet forms, Osaka J. Math. 35 (1998), no. 3, 683-715. MR 1648400
  • [29] Kazuhiro Kuwae, Stochastic calculus over symmetric Markov processes without time reversal, Ann. Probab. 38 (2010), no. 4, 1532-1569. MR 2663636, https://doi.org/10.1214/09-AOP516
  • [30] K. Kuwae, Stochastic calculus over symmetric Markov processes with time reversal, Nagoya Math. J. 220 (2015), 91-148. MR 3429727, https://doi.org/10.1215/00277630-3335905
  • [31] Kazuhiro Kuwae and Shintaro Nakao, Time changes in Dirichlet space theory, Osaka J. Math. 28 (1991), no. 4, 847-865. MR 1152958
  • [32] Kazuhiro Kuwae and Masayuki Takahashi, Kato class measures of symmetric Markov processes under heat kernel estimates, J. Funct. Anal. 250 (2007), no. 1, 86-113. MR 2345907, https://doi.org/10.1016/j.jfa.2006.10.010
  • [33] Zhi Ming Ma and Michael Röckner, Introduction to the theory of (nonsymmetric) Dirichlet forms, Universitext, Springer-Verlag, Berlin, 1992. MR 1214375
  • [34] Yoichi Oshima, Semi-Dirichlet forms and Markov processes, De Gruyter Studies in Mathematics, vol. 48, Walter de Gruyter & Co., Berlin, 2013. MR 3060116
  • [35] Michał Ryznar, Estimates of Green function for relativistic $ \alpha $-stable process, Potential Anal. 17 (2002), no. 1, 1-23. MR 1906405, https://doi.org/10.1023/A:1015231913916
  • [36] Sadao Sato, An inequality for the spectral radius of Markov processes, Kodai Math. J. 8 (1985), no. 1, 5-13. MR 776702, https://doi.org/10.2996/kmj/1138036992
  • [37] Michael Sharpe, General theory of Markov processes, Pure and Applied Mathematics, vol. 133, Academic Press, Inc., Boston, MA, 1988. MR 958914
  • [38] Martin L. Silverstein, Symmetric Markov processes, Lecture Notes in Mathematics, Vol. 426, Springer-Verlag, Berlin-New York, 1974. MR 0386032
  • [39] Renming Song, Estimates on the transition densities of Girsanov transforms of symmetric stable processes, J. Theoret. Probab. 19 (2006), no. 2, 487-507. MR 2283387, https://doi.org/10.1007/s10959-006-0023-4
  • [40] Peter Stollmann and Jürgen Voigt, Perturbation of Dirichlet forms by measures, Potential Anal. 5 (1996), no. 2, 109-138. MR 1378151, https://doi.org/10.1007/BF00396775
  • [41] Masayoshi Takeda, Conditional gaugeability and subcriticality of generalized Schrödinger operators, J. Funct. Anal. 191 (2002), no. 2, 343-376. MR 1911190, https://doi.org/10.1006/jfan.2001.3864
  • [42] Masayoshi Takeda, Gaugeability for Feynman-Kac functionals with applications to symmetric $ \alpha $-stable processes, Proc. Amer. Math. Soc. 134 (2006), no. 9, 2729-2738. MR 2213753, https://doi.org/10.1090/S0002-9939-06-08281-5
  • [43] Masayoshi Takeda, Feynman-Kac penalisations of symmetric stable processes, Electron. Commun. Probab. 15 (2010), 32-43. MR 2591632, https://doi.org/10.1214/ECP.v15-1524
  • [44] Masayoshi Takeda, Some topics connected with gaugeability for Feynman-Kac functionals, Proceedings of RIMS Workshop on Stochastic Analysis and Applications, RIMS Kôkyûroku Bessatsu, B6, Res. Inst. Math. Sci. (RIMS), Kyoto, 2008, pp. 221-236. MR 2407567
  • [45] Masayoshi Takeda, A tightness property of a symmetric Markov process and the uniform large deviation principle, Proc. Amer. Math. Soc. 141 (2013), no. 12, 4371-4383. MR 3105879, https://doi.org/10.1090/S0002-9939-2013-11696-5
  • [46] Masayoshi Takeda and Kaneharu Tsuchida, Differentiability of spectral functions for symmetric $ \alpha $-stable processes, Trans. Amer. Math. Soc. 359 (2007), no. 8, 4031-4054. MR 2302522, https://doi.org/10.1090/S0002-9947-07-04149-9
  • [47] Masayoshi Takeda and Toshihiro Uemura, Subcriticality and gaugeability for symmetric $ \alpha $-stable processes, Forum Math. 16 (2004), no. 4, 505-517. MR 2044025, https://doi.org/10.1515/form.2004.024
  • [48] Z. Zhao, Subcriticality and gaugeability of the Schrödinger operator, Trans. Amer. Math. Soc. 334 (1992), no. 1, 75-96. MR 1068934, https://doi.org/10.2307/2153973

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 31C25, 60J45, 60J57, 35J10, 60J35, 60J25

Retrieve articles in all journals with MSC (2010): 31C25, 60J45, 60J57, 35J10, 60J35, 60J25


Additional Information

Daehong Kim
Affiliation: Department of Mathematics and Engineering, Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555 Japan
Email: daehong@gpo.kumamoto-u.ac.jp

Kazuhiro Kuwae
Affiliation: Department of Mathematics and Engineering, Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555 Japan
Address at time of publication: Department of Applied Mathematics, Faculty of Science, Fukuoka University, Fukuoka, 814-0180 Japan
Email: kuwae@gpo.kumamoto-u.ac.jp, kuwae@fukuoka-u.ac.jp

DOI: https://doi.org/10.1090/tran/6702
Keywords: Feynman-Kac semigroup, symmetric Markov processes, Dirichlet forms, irreducibility, absolute continuity condition, continuous additive functional of zero energy, Kato class, extended Kato class, Green-boundedness, Green-tight measures of Kato class, semi-Green-tight measures of extended Kato class, Green-tight measures of Kato class in the sense of Chen, semi-Green-tight measures of extended Kato class in the sense of Chen, conditional Green-boundedess, conditionally Green-tight measures in the sense of Chen, conditionally Green-bounded jump functions, conditionally Green-tight jump functions
Received by editor(s): October 15, 2012
Received by editor(s) in revised form: December 26, 2013, February 17, 2014, and July 6, 2015
Published electronically: November 16, 2016
Additional Notes: The first named author was partially supported by a Grant-in-Aid for Scientific Research (C) No. 23540147 from Japan Society for the Promotion of Science
The second named author was partially supported by a Grant-in-Aid for Scientific Research (B) No. 22340036 from Japan Society for the Promotion of Science
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society