Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Entropy formula for random $ \mathbb{Z}^k$-actions


Author: Yujun Zhu
Journal: Trans. Amer. Math. Soc. 369 (2017), 4517-4544
MSC (2010): Primary 37A35, 37C85, 37H99
DOI: https://doi.org/10.1090/tran/6798
Published electronically: December 22, 2016
MathSciNet review: 3632542
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, entropies, including measure-theoretic entropy and topological entropy, are considered for random $ \mathbb{Z}^k$-actions which are generated by random compositions of the generators of $ \mathbb{Z}^k$-actions. Applying Pesin's theory for commutative diffeomorphisms we obtain a measure-theoretic entropy formula of $ C^{2}$ random $ \mathbb{Z}^k$-actions via the Lyapunov spectra of the generators. Some formulas and bounds of topological entropy for certain random $ \mathbb{Z}^k$(or $ \mathbb{Z}_+^k)$-actions generated by more general maps, such as Lipschitz maps, continuous maps on finite graphs and $ C^{1}$ expanding maps, are also obtained. Moreover, as an application, we give a formula of Friedland's entropy for certain $ C^{2}$ $ \mathbb{Z}^k$-actions.


References [Enhancements On Off] (What's this?)

  • [1] L. Abramov and V. Rokhlin, The entropy of a skew product of measure-preserving transformations, Amer. Math. Soc. Transl. (Ser. 2), vol. 48, Amer. Math. Soc., Providence, RI, 1966, pp. 255-265.
  • [2] Jörg Bahnmüller and Thomas Bogenschütz, A Margulis-Ruelle inequality for random dynamical systems, Arch. Math. (Basel) 64 (1995), no. 3, 246-253. MR 1314494, https://doi.org/10.1007/BF01188575
  • [3] Jörg Bahnmüller and Pei-Dong Liu, Characterization of measures satisfying the Pesin entropy formula for random dynamical systems, J. Dynam. Differential Equations 10 (1998), no. 3, 425-448. MR 1646606, https://doi.org/10.1023/A:1022653229891
  • [4] Rufus Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414. MR 0274707
  • [5] Robert Burton, Karma Dajani, and Ronald Meester, Entropy for random group actions, Ergodic Theory Dynam. Systems 18 (1998), no. 1, 109-124. MR 1609487, https://doi.org/10.1017/S0143385798097582
  • [6] Wen-Chiao Cheng and Sheldon E. Newhouse, Pre-image entropy, Ergodic Theory Dynam. Systems 25 (2005), no. 4, 1091-1113. MR 2158398, https://doi.org/10.1017/S0143385704000240
  • [7] Manfred Einsiedler and Douglas Lind, Algebraic $ \mathbb{Z}^d$-actions of entropy rank one, Trans. Amer. Math. Soc. 356 (2004), no. 5, 1799-1831. MR 2031042, https://doi.org/10.1090/S0002-9947-04-03554-8
  • [8] John Franks and Michał Misiurewicz, Topological methods in dynamics, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 547-598. MR 1928524, https://doi.org/10.1016/S1874-575X(02)80009-1
  • [9] Shmuel Friedland, Entropy of graphs, semigroups and groups, Ergodic theory of $ {\bf Z}^d$ actions (Warwick, 1993-1994) London Math. Soc. Lecture Note Ser., vol. 228, Cambridge Univ. Press, Cambridge, 1996, pp. 319-343. MR 1411226, https://doi.org/10.1017/CBO9780511662812.013
  • [10] W. Geller and M. Pollicott, An entropy for $ \mathbf {Z}^2$-actions with finite entropy generators, Fund. Math. 157 (1998), no. 2-3, 209-220. Dedicated to the memory of Wiesław Szlenk. MR 1636888
  • [11] Hu Yi Hu, Some ergodic properties of commuting diffeomorphisms, Ergodic Theory Dynam. Systems 13 (1993), no. 1, 73-100. MR 1213080, https://doi.org/10.1017/S0143385700007215
  • [12] Mike Hurley, On topological entropy of maps, Ergodic Theory Dynam. Systems 15 (1995), no. 3, 557-568. MR 1336706, https://doi.org/10.1017/S014338570000852X
  • [13] Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374
  • [14] Yuri Kifer, Ergodic theory of random transformations, Progress in Probability and Statistics, vol. 10, Birkhäuser Boston, Inc., Boston, MA, 1986. MR 884892
  • [15] Yuri Kifer, On the topological pressure for random bundle transformations, Topology, ergodic theory, real algebraic geometry, Amer. Math. Soc. Transl. Ser. 2, vol. 202, Amer. Math. Soc., Providence, RI, 2001, pp. 197-214. MR 1819189, https://doi.org/10.1090/trans2/202/14
  • [16] Yuri Kifer and Pei-Dong Liu, Random dynamics, Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 379-499. MR 2186245, https://doi.org/10.1016/S1874-575X(06)80030-5
  • [17] Sergiĭ Kolyada and Ľubomír Snoha, Topological entropy of nonautonomous dynamical systems, Random Comput. Dynam. 4 (1996), no. 2-3, 205-233. MR 1402417
  • [18] François Ledrappier and Jean-Marie Strelcyn, A proof of the estimation from below in Pesin's entropy formula, Ergodic Theory Dynam. Systems 2 (1982), no. 2, 203-219 (1983). MR 693976, https://doi.org/10.1017/S0143385700001528
  • [19] F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula, Ann. of Math. (2) 122 (1985), no. 3, 509-539; II. Relations between entropy, exponents and dimension, Ann. of Math. (2) 122 (1985), no. 3, 540-574. MR 819556; MR 819557, https://doi.org/10.2307/1971328
  • [20] Pei-Dong Liu and Min Qian, Smooth ergodic theory of random dynamical systems, Lecture Notes in Mathematics, vol. 1606, Springer-Verlag, Berlin, 1995. MR 1369243
  • [21] Pei-Dong Liu, Dynamics of random transformations: smooth ergodic theory, Ergodic Theory Dynam. Systems 21 (2001), no. 5, 1279-1319. MR 1855833, https://doi.org/10.1017/S0143385701001614
  • [22] Ricardo Mañé, A proof of Pesin's formula, Ergodic Theory Dynamical Systems 1 (1981), no. 1, 95-102. MR 627789
  • [23] Ricardo Mañé, Ergodic theory and differentiable dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 8, Springer-Verlag, Berlin, 1987. Translated from the Portuguese by Silvio Levy. MR 889254
  • [24] Zbigniew Nitecki and Feliks Przytycki, Preimage entropy for mappings, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), no. 9, 1815-1843. Discrete dynamical systems. MR 1728741, https://doi.org/10.1142/S0218127499001309
  • [25] V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179-210 (Russian). MR 0240280
  • [26] Ja. B. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Uspehi Mat. Nauk 32 (1977), no. 4 (196), 55-112, 287 (Russian). MR 0466791
  • [27] David Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat. 9 (1978), no. 1, 83-87. MR 516310, https://doi.org/10.1007/BF02584795
  • [28] David Ruelle, Statistical mechanics on a compact set with $ Z^{v}$ action satisfying expansiveness and specification, Trans. Amer. Math. Soc. 187 (1973), 237-251. MR 0417391
  • [29] Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108
  • [30] Jin-lian Zhang and Lan-xin Chen, Lower bounds of the topological entropy for nonautonomous dynamical systems, Appl. Math. J. Chinese Univ. Ser. B 24 (2009), no. 1, 76-82. MR 2486498, https://doi.org/10.1007/s11766-009-2013-7
  • [31] Yujun Zhu, Jinlian Zhang, and Lianfa He, Topological entropy of a sequence of monotone maps on circles, J. Korean Math. Soc. 43 (2006), no. 2, 373-382. MR 2203560, https://doi.org/10.4134/JKMS.2006.43.2.373
  • [32] Yujun Zhu, Preimage entropy for random dynamical systems, Discrete Contin. Dyn. Syst. 18 (2007), no. 4, 829-851. MR 2318271, https://doi.org/10.3934/dcds.2007.18.829
  • [33] Yujun Zhu, On local entropy of random transformations, Stoch. Dyn. 8 (2008), no. 2, 197-207. MR 2429200, https://doi.org/10.1142/S0219493708002275
  • [34] Y. Zhu, W. Zhang, and E. Shi, A formula of Friedland's entropy for $ \mathbb{Z}_+^k$-actions on tori (in Chinese), Sci. China: Mathematics 44(6) (2014), 701-709.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 37A35, 37C85, 37H99

Retrieve articles in all journals with MSC (2010): 37A35, 37C85, 37H99


Additional Information

Yujun Zhu
Affiliation: College of Mathematics and Information Science and Hebei Key Laboratory of Computational Mathematics and Applications, Hebei Normal University, Shijiazhuang, Hebei, 050024, People’s Republic of China

DOI: https://doi.org/10.1090/tran/6798
Keywords: Entropy formula, random $\mathbb{Z}^k$-action, Lyapunov exponent, Friedland's entropy
Received by editor(s): December 17, 2014
Received by editor(s) in revised form: June 11, 2015
Published electronically: December 22, 2016
Additional Notes: The author was supported by NSFC (No. 11371120), NSFHB (No. A2014205154), BRHB (No. BR2-219) and GCCHB (No. GCC2014052)
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society