Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

The algebra of slice functions


Authors: Riccardo Ghiloni, Alessandro Perotti and Caterina Stoppato
Journal: Trans. Amer. Math. Soc. 369 (2017), 4725-4762
MSC (2010): Primary 30G35; Secondary 17D05, 32A30, 30C15
DOI: https://doi.org/10.1090/tran/6816
Published electronically: November 28, 2016
MathSciNet review: 3632548
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study some fundamental algebraic properties of slice functions and slice regular functions over an alternative $ ^*$-algebra $ A$ over $ \mathbb{R}$. These recently introduced function theories generalize to higher dimensions the classical theory of functions of a complex variable. Slice functions over $ A$, which comprise all polynomials over $ A$, form an alternative $ ^*$-algebra themselves when endowed with appropriate operations. We presently study this algebraic structure in detail and we confront questions about the existence of multiplicative inverses. This study leads us to a detailed investigation of the zero sets of slice functions and of slice regular functions, which are of course of independent interest.


References [Enhancements On Off] (What's this?)

  • [1] Amedeo Altavilla, Some properties for quaternionic slice regular functions on domains without real points, Complex Var. Elliptic Equ. 60 (2015), no. 1, 59-77. MR 3295088, https://doi.org/10.1080/17476933.2014.889691
  • [2] John C. Baez and John Huerta, $ \mathrm {G}_2$ and the rolling ball, Trans. Amer. Math. Soc. 366 (2014), no. 10, 5257-5293. MR 3240924, https://doi.org/10.1090/S0002-9947-2014-05977-1
  • [3] F. Brackx, Richard Delanghe, and F. Sommen, Clifford analysis, Research Notes in Mathematics, vol. 76, Pitman (Advanced Publishing Program), Boston, MA, 1982. MR 697564
  • [4] R. H. Bruck and Erwin Kleinfeld, The structure of alternative division rings, Proc. Amer. Math. Soc. 2 (1951), 878-890. MR 0045099
  • [5] Fabrizio Colombo, Irene Sabadini, and Daniele C. Struppa, Slice monogenic functions, Israel J. Math. 171 (2009), 385-403. MR 2520116, https://doi.org/10.1007/s11856-009-0055-4
  • [6] Fabrizio Colombo, Irene Sabadini, and Daniele C. Struppa, Noncommutative functional calculus, Progress in Mathematics, vol. 289, Birkhäuser/Springer Basel AG, Basel, 2011. Theory and applications of slice hyperholomorphic functions. MR 2752913
  • [7] H.-D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, J. Neukirch, A. Prestel, and R. Remmert, Numbers, Graduate Texts in Mathematics, vol. 123, Springer-Verlag, New York, 1990. With an introduction by K. Lamotke; Translated from the second German edition by H. L. S. Orde; Translation edited and with a preface by J. H. Ewing; Readings in Mathematics. MR 1066206
  • [8] Douglas R. Farenick, Algebras of linear transformations, Universitext, Springer-Verlag, New York, 2001. MR 1786341
  • [9] Graziano Gentili, Simon Salamon, and Caterina Stoppato, Twistor transforms of quaternionic functions and orthogonal complex structures, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 11, 2323-2353. MR 3283400, https://doi.org/10.4171/JEMS/488
  • [10] Graziano Gentili, Caterina Stoppato, and Daniele C. Struppa, Regular functions of a quaternionic variable, Springer Monographs in Mathematics, Springer, Heidelberg, 2013. MR 3013643
  • [11] Graziano Gentili and Daniele C. Struppa, A new approach to Cullen-regular functions of a quaternionic variable, C. R. Math. Acad. Sci. Paris 342 (2006), no. 10, 741-744 (English, with English and French summaries). MR 2227751, https://doi.org/10.1016/j.crma.2006.03.015
  • [12] Graziano Gentili and Daniele C. Struppa, A new theory of regular functions of a quaternionic variable, Adv. Math. 216 (2007), no. 1, 279-301. MR 2353257, https://doi.org/10.1016/j.aim.2007.05.010
  • [13] Graziano Gentili and Daniele C. Struppa, Regular functions on a Clifford algebra, Complex Var. Elliptic Equ. 53 (2008), no. 5, 475-483. MR 2410345, https://doi.org/10.1080/17476930701778869
  • [14] Graziano Gentili and Daniele C. Struppa, Regular functions on the space of Cayley numbers, Rocky Mountain J. Math. 40 (2010), no. 1, 225-241. MR 2607115, https://doi.org/10.1216/RMJ-2010-40-1-225
  • [15] R. Ghiloni and A. Perotti, Slice regular functions on real alternative algebras, Adv. Math. 226 (2011), no. 2, 1662-1691. MR 2737796, https://doi.org/10.1016/j.aim.2010.08.015
  • [16] R. Ghiloni and A. Perotti, Zeros of regular functions of quaternionic and octonionic variable: a division lemma and the camshaft effect, Ann. Mat. Pura Appl. (4) 190 (2011), no. 3, 539-551. MR 2825261, https://doi.org/10.1007/s10231-010-0162-1
  • [17] Riccardo Ghiloni, Valter Moretti, and Alessandro Perotti, Continuous slice functional calculus in quaternionic Hilbert spaces, Rev. Math. Phys. 25 (2013), no. 4, 1350006, 83. MR 3062919, https://doi.org/10.1142/S0129055X13500062
  • [18] Riccardo Ghiloni and Alessandro Perotti, Power and spherical series over real alternative $ ^*$-algebras, Indiana Univ. Math. J. 63 (2014), no. 2, 495-532. MR 3233217, https://doi.org/10.1512/iumj.2014.63.5227
  • [19] Riccardo Ghiloni and Vincenzo Recupero, Semigroups over real alternative *-algebras: generation theorems and spherical sectorial operators, Trans. Amer. Math. Soc. 368 (2016), no. 4, 2645-2678. MR 3449252, https://doi.org/10.1090/tran/6399
  • [20] Riccardo Ghiloni, Alessandro Perotti, and Caterina Stoppato, Singularities of slice regular functions over real alternative $ *$-algebras, Adv. Math. 305 (2017), 1085-1130. MR 3570154, https://doi.org/10.1016/j.aim.2016.10.009
  • [21] Riccardo Ghiloni, Alessandro Perotti, and Vincenzo Recupero, Noncommutative Cauchy integral formula, Complex Anal. Oper. Theory, DOI:10.1007/s11785-016-0543-6.
  • [22] Klaus Gürlebeck, Klaus Habetha, and Wolfgang Sprößig, Holomorphic functions in the plane and $ n$-dimensional space, Birkhäuser Verlag, Basel, 2008. Translated from the 2006 German original; With 1 CD-ROM (Windows and UNIX). MR 2369875
  • [23] Gàbor Hegedüs, Josef Schicho, and Hans-Peter Schröcker, Factorization of rational curves in the study quadric, Mechanism and Machine Theory 69 (2013), 142-152.
  • [24] Drahoslava Janovská and Gerhard Opfer, Zeros and singular points for one-sided coquaternionic polynomials with an extension to other $ \mathbb{R}^4$ algebras, Electron. Trans. Numer. Anal. 41 (2014), 133-158. MR 3225628
  • [25] T. Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics, vol. 131, Springer-Verlag, New York, 1991. MR 1125071
  • [26] Richard D. Schafer, An introduction to nonassociative algebras, Pure and Applied Mathematics, Vol. 22, Academic Press, New York-London, 1966. MR 0210757
  • [27] Caterina Stoppato, Singularities of slice regular functions, Math. Nachr. 285 (2012), no. 10, 1274-1293. MR 2955794, https://doi.org/10.1002/mana.201100082

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 30G35, 17D05, 32A30, 30C15

Retrieve articles in all journals with MSC (2010): 30G35, 17D05, 32A30, 30C15


Additional Information

Riccardo Ghiloni
Affiliation: Dipartimento di Matematica, Università di Trento, Via Sommarive 14, I-38123 Povo Trento, Italy
Email: riccardo.ghiloni@unitn.it

Alessandro Perotti
Affiliation: Dipartimento di Matematica, Università di Trento, Via Sommarive 14, I-38123 Povo Trento, Italy
Email: alessandro.perotti@unitn.it

Caterina Stoppato
Affiliation: Istituto Nazionale di Alta Matematica, Unità di Ricerca di Firenze c/o DiMaI “U. Dini” Università di Firenze, Viale Morgagni 67/A, I-50134 Firenze, Italy
Email: stoppato@math.unifi.it

DOI: https://doi.org/10.1090/tran/6816
Received by editor(s): February 27, 2015
Received by editor(s) in revised form: July 13, 2015
Published electronically: November 28, 2016
Additional Notes: This work was supported by GNSAGA of INdAM and by the grants FIRB “Differential Geometry and Geometric Function Theory” (RBFR12W1AQ) and PRIN “Varietà reali e complesse: geometria, topologia e analisi armonica” (2010NNBZ78) of the Italian Ministry of Education. We warmly thank the anonymous referee, whose helpful suggestions have significantly improved the presentation
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society