Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On principal realization of modules for the affine Lie algebra $ A_1^{(1)}$ at the critical level


Authors: Dražen Adamović, Naihuan Jing and Kailash C. Misra
Journal: Trans. Amer. Math. Soc. 369 (2017), 5113-5136
MSC (2010): Primary 17B69; Secondary 17B67, 17B68, 81R10
DOI: https://doi.org/10.1090/tran/7009
Published electronically: March 1, 2017
MathSciNet review: 3632562
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present complete realization of irreducible $ A_1^{(1)}$-modules at the critical level in the principal gradation. Our construction uses vertex algebraic techniques, the theory of twisted modules and representations of Lie conformal superalgebras. We also provide an alternative Z-algebra approach to this construction. All irreducible highest weight $ A_1^{(1)}$-modules at the critical level are realized on the vector space $ M_{\tfrac {1}{2}+\mathbb{Z}}(1)^{\otimes 2}$ where $ M_{\tfrac {1}{2} + \mathbb{Z}}(1) $ is the polynomial ring $ {\mathbb{C}}[\alpha (-1/2), \alpha (-3/2),\dots ]$. Explicit combinatorial bases for these modules are also given.


References [Enhancements On Off] (What's this?)

  • [1] Dražen Adamović, Representations of the $ N=2$ superconformal vertex algebra, Internat. Math. Res. Notices 2 (1999), 61-79. MR 1670180, https://doi.org/10.1155/S1073792899000033
  • [2] Dražen Adamović, Lie superalgebras and irreducibility of $ A^{(1)}_1$-modules at the critical level, Comm. Math. Phys. 270 (2007), no. 1, 141-161. MR 2276443, https://doi.org/10.1007/s00220-006-0153-7
  • [3] Dražen Adamović, A classification of irreducible Wakimoto modules for the affine Lie algebra $ A^{(1)}_1$, Recent advances in representation theory, quantum groups, algebraic geometry, and related topics, Contemp. Math., vol. 623, Amer. Math. Soc., Providence, RI, 2014, pp. 1-12. MR 3288618, https://doi.org/10.1090/conm/623/12454
  • [4] Dražen Adamović and Antun Milas, The $ N=1$ triplet vertex operator superalgebras: twisted sector, SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), Paper 087, 24 pp.. MR 2470509, https://doi.org/10.3842/SIGMA.2008.087
  • [5] Tomoyuki Arakawa and Peter Fiebig, The linkage principle for restricted critical level representations of affine Kac-Moody algebras, Compos. Math. 148 (2012), no. 6, 1787-1810. MR 2999304, https://doi.org/10.1112/S0010437X12000395
  • [6] K. Barron, Twisted modules for N=2 supersymmetric vertex operator superalgebras arising from finite automorphisms of the N=2 Neveu-Schwarz algebra, arXiv:1110.0229.
  • [7] Chongying Dong and James Lepowsky, Generalized vertex algebras and relative vertex operators, Progress in Mathematics, vol. 112, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1233387
  • [8] Chongying Dong and Geoffrey Mason, On quantum Galois theory, Duke Math. J. 86 (1997), no. 2, 305-321. MR 1430435, https://doi.org/10.1215/S0012-7094-97-08609-9
  • [9] Jonathan Dunbar, Naihuan Jing, and Kailash C. Misra, Realization of $ \widehat {\mathfrak{sl}}_2(\mathbb{C})$ at the critical level, Commun. Contemp. Math. 16 (2014), no. 2, 1450006, 13. MR 3195157, https://doi.org/10.1142/S0219199714500060
  • [10] Yuji Hara, Michio Jimbo, Hitoshi Konno, Satoru Odake, and Jun'ichi Shiraishi, On Lepowsky-Wilson's $ \mathcal Z$-algebra, Recent developments in infinite-dimensional Lie algebras and conformal field theory (Charlottesville, VA, 2000) Contemp. Math., vol. 297, Amer. Math. Soc., Providence, RI, 2002, pp. 143-149. MR 1919816, https://doi.org/10.1090/conm/297/05096
  • [11] Yuji Hara, Naihuan Jing, and Kailash Misra, BRST resolution for the principally graded Wakimoto module of $ \widehat {\mathfrak{s}\mathfrak{l}}_2$, Lett. Math. Phys. 58 (2001), no. 3, 181-188 (2002). MR 1892918, https://doi.org/10.1023/A:1014559525117
  • [12] Boris L. Feigin and Edward V. Frenkel, Representations of affine Kac-Moody algebras and bosonization, Physics and mathematics of strings, World Sci. Publ., Teaneck, NJ, 1990, pp. 271-316. MR 1104262
  • [13] Boris L. Feĭgin and Edward V. Frenkel, Affine Kac-Moody algebras and semi-infinite flag manifolds, Comm. Math. Phys. 128 (1990), no. 1, 161-189. MR 1042449
  • [14] Edward Frenkel, Wakimoto modules, opers and the center at the critical level, Adv. Math. 195 (2005), no. 2, 297-404. MR 2146349, https://doi.org/10.1016/j.aim.2004.08.002
  • [15] Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, 2nd ed., Mathematical Surveys and Monographs, vol. 88, American Mathematical Society, Providence, RI, 2004. MR 2082709
  • [16] Edward Frenkel and Dennis Gaitsgory, Geometric realizations of Wakimoto modules at the critical level, Duke Math. J. 143 (2008), no. 1, 117-203. MR 2414746, https://doi.org/10.1215/00127094-2008-017
  • [17] Igor B. Frenkel, Yi-Zhi Huang, and James Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), no. 494, viii+64. MR 1142494, https://doi.org/10.1090/memo/0494
  • [18] Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR 996026
  • [19] Yongcun Gao and Haisheng Li, Generalized vertex algebras generated by parafermion-like vertex operators, J. Algebra 240 (2001), no. 2, 771-807. MR 1841356, https://doi.org/10.1006/jabr.2001.8754
  • [20] Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219
  • [21] Victor Kac, Vertex algebras for beginners, 2nd ed., University Lecture Series, vol. 10, American Mathematical Society, Providence, RI, 1998. MR 1651389
  • [22] V. G. Kac and D. A. Kazhdan, Structure of representations with highest weight of infinite-dimensional Lie algebras, Adv. in Math. 34 (1979), no. 1, 97-108. MR 547842, https://doi.org/10.1016/0001-8708(79)90066-5
  • [23] James Lepowsky and Robert Lee Wilson, Construction of the affine Lie algebra $ A_{1}^{(1)}$, Comm. Math. Phys. 62 (1978), no. 1, 43-53. MR 0573075
  • [24] James Lepowsky and Robert Lee Wilson, A new family of algebras underlying the Rogers-Ramanujan identities and generalizations, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 12, 7254-7258. MR 638674
  • [25] James Lepowsky and Robert Lee Wilson, The structure of standard modules. I. Universal algebras and the Rogers-Ramanujan identities, Invent. Math. 77 (1984), no. 2, 199-290. MR 752821, https://doi.org/10.1007/BF01388447
  • [26] Hai-Sheng Li, Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, Moonshine, the Monster, and related topics (South Hadley, MA, 1994), Contemp. Math., vol. 193, Amer. Math. Soc., Providence, RI, 1996, pp. 203-236. MR 1372724, https://doi.org/10.1090/conm/193/02373
  • [27] Haisheng Li, On abelian coset generalized vertex algebras, Commun. Contemp. Math. 3 (2001), no. 2, 287-340. MR 1831932, https://doi.org/10.1142/S0219199701000366
  • [28] James Lepowsky and Haisheng Li, Introduction to vertex operator algebras and their representations, Progress in Mathematics, vol. 227, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2023933
  • [29] Minoru Wakimoto, Fock representations of the affine Lie algebra $ A^{(1)}_1$, Comm. Math. Phys. 104 (1986), no. 4, 605-609. MR 841673
  • [30] Xiaoping Xu, Introduction to vertex operator superalgebras and their modules, Mathematics and its Applications, vol. 456, Kluwer Academic Publishers, Dordrecht, 1998. MR 1656671

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 17B69, 17B67, 17B68, 81R10

Retrieve articles in all journals with MSC (2010): 17B69, 17B67, 17B68, 81R10


Additional Information

Dražen Adamović
Affiliation: Department of Mathematics, University of Zagreb, Bijenička 30, 10 000 Zagreb, Croatia
Email: adamovic@math.hr

Naihuan Jing
Affiliation: Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695
Email: jing@math.ncsu.edu

Kailash C. Misra
Affiliation: Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695
Email: misra@math.ncsu.edu

DOI: https://doi.org/10.1090/tran/7009
Keywords: Vertex superalgebras, affine Lie algebras, Clifford algebras, Weyl algebra, lattice vertex operator algebras, critical level, Z-algebras
Received by editor(s): December 17, 2015
Published electronically: March 1, 2017
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society