Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Homological dimensions for co-rank one idempotent subalgebras


Authors: Colin Ingalls and Charles Paquette
Journal: Trans. Amer. Math. Soc. 369 (2017), 5317-5340
MSC (2010): Primary 16E10, 16G20
DOI: https://doi.org/10.1090/tran/6815
Published electronically: November 28, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ k$ be an algebraically closed field and $ A$ a (left and right) Noetherian associative $ k$-algebra. Assume further that $ A$ is either positively graded or semiperfect (this includes the class of finite dimensional $ k$-algebras and $ k$-algebras that are finitely generated modules over a Noetherian central Henselian ring). Let $ e$ be a primitive idempotent of $ A$, which we assume is of degree 0 if $ A$ is positively graded. We consider the idempotent subalgebra $ \Gamma = (1-e)A(1-e)$ and $ S_e$ the simple right $ A$-module $ S_e = eA/e{\rm rad}A$, where $ {\rm rad}A$ is the Jacobson radical of $ A$ or the graded Jacobson radical of $ A$ if $ A$ is positively graded. In this paper, we relate the homological dimensions of $ A$ and $ \Gamma $, using the homological properties of $ S_e$. First, if $ S_e$ has no self-extensions of any degree, then the global dimension of $ A$ is finite if and only if that of $ \Gamma $ is. On the other hand, if the global dimensions of both $ A$ and $ \Gamma $ are finite, then $ S_e$ cannot have self-extensions of degree greater than one, provided $ A/{\rm rad}A$ is finite dimensional.


References [Enhancements On Off] (What's this?)

  • [1] Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, 2nd ed., Graduate Texts in Mathematics, vol. 13, Springer-Verlag, New York, 1992. MR 1245487
  • [2] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
  • [3] Maurice Auslander, On the dimension of modules and algebras. III. Global dimension, Nagoya Math. J. 9 (1955), 67-77. MR 0074406
  • [4] M. Auslander, M. I. Platzeck, and G. Todorov, Homological theory of idempotent ideals, Trans. Amer. Math. Soc. 332 (1992), no. 2, 667-692. MR 1052903, https://doi.org/10.2307/2154190
  • [5] Raf Bocklandt, Travis Schedler, and Michael Wemyss, Superpotentials and higher order derivations, J. Pure Appl. Algebra 214 (2010), no. 9, 1501-1522. MR 2593679, https://doi.org/10.1016/j.jpaa.2009.07.013
  • [6] Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
  • [7] Daniel Chan, Paul Hacking, and Colin Ingalls, Canonical singularities of orders over surfaces, Proc. Lond. Math. Soc. (3) 98 (2009), no. 1, 83-115. MR 2472162, https://doi.org/10.1112/plms/pdn025
  • [8] Jin Zhong Xu and Fu Chang Cheng, Homological dimensions over non-commutative semi-local rings, J. Algebra 169 (1994), no. 3, 679-685. MR 1302111, https://doi.org/10.1006/jabr.1994.1303
  • [9] Alastair Craw, Diane Maclagan, and Rekha R. Thomas, Moduli of McKay quiver representations. II. Gröbner basis techniques, J. Algebra 316 (2007), no. 2, 514-535. MR 2356842, https://doi.org/10.1016/j.jalgebra.2007.02.014
  • [10] Kent R. Fuller, The Cartan determinant and global dimension of Artinian rings, Azumaya algebras, actions, and modules (Bloomington, IN, 1990) Contemp. Math., vol. 124, Amer. Math. Soc., Providence, RI, 1992, pp. 51-72. MR 1144028, https://doi.org/10.1090/conm/124/1144028
  • [11] K. R. Fuller and M. Saorín, On the finitistic dimension conjecture for Artinian rings, Manuscripta Math. 74 (1992), no. 2, 117-132. MR 1147557, https://doi.org/10.1007/BF02567662
  • [12] Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448 (French). MR 0232821
  • [13] Mitsuyasu Hashimoto, Auslander-Buchweitz approximations of equivariant modules, London Mathematical Society Lecture Note Series, vol. 282, Cambridge University Press, Cambridge, 2000. MR 1797672
  • [14] Dieter Happel, Auslander-Reiten triangles in derived categories of finite-dimensional algebras, Proc. Amer. Math. Soc. 112 (1991), no. 3, 641-648. MR 1045137, https://doi.org/10.2307/2048684
  • [15] T. Howard, Constructing equivalences between singularity categories of finite dimensional algebras, Maurice Auslander Distinguished Lectures and International Conference in Woods Hole, Massachusetts, 2013.
  • [16] Kiyoshi Igusa, Shiping Liu, and Charles Paquette, A proof of the strong no loop conjecture, Adv. Math. 228 (2011), no. 5, 2731-2742. MR 2838056, https://doi.org/10.1016/j.aim.2011.06.042
  • [17] Osamu Iyama and Michael Wemyss, The classification of special Cohen-Macaulay modules, Math. Z. 265 (2010), no. 1, 41-83. MR 2606949, https://doi.org/10.1007/s00209-009-0501-3
  • [18] Roberto Martínez-Villa and Øyvind Solberg, Graded and Koszul categories, Appl. Categ. Structures 18 (2010), no. 6, 615-652. MR 2738513, https://doi.org/10.1007/s10485-009-9191-6
  • [19] J. C. McConnell, $ I$-adic completions of noncommutative rings, Israel J. Math. 32 (1979), no. 4, 305-310. MR 571085, https://doi.org/10.1007/BF02760460
  • [20] B. L. Osofsky, Global dimension of valuation rings, Trans. Amer. Math. Soc. 127 (1967), 136-149. MR 0206074
  • [21] Chrysostomos Psaroudakis, Homological theory of recollements of abelian categories, J. Algebra 398 (2014), 63-110. MR 3123754, https://doi.org/10.1016/j.jalgebra.2013.09.020
  • [22] Idun Reiten and Michel Van den Bergh, Two-dimensional tame and maximal orders of finite representation type, Mem. Amer. Math. Soc. 80 (1989), no. 408, viii+72. MR 978602, https://doi.org/10.1090/memo/0408
  • [23] J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Revised edition, Graduate Studies in Mathematics, vol. 30, American Mathematical Society, Providence, RI, 2001. With the cooperation of L. W. Small. MR 1811901
  • [24] Amit Roy, A note on filtered rings, Arch. Math. 16 (1965), 421-427. MR 0190184
  • [25] F. L. Sandomierski, Modules over the endomorphism ring of a finitely generated projective module, Proc. Amer. Math. Soc. 31 (1972), 27-31. MR 0288137
  • [26] Jean-Pierre Serre, Sur la dimension homologique des anneaux et des modules noethériens, Proceedings of the international symposium on algebraic number theory, Tokyo & Nikko, 1955, Science Council of Japan, Tokyo, 1956, pp. 175-189 (French). MR 0086071
  • [27] George V. Wilson, The Cartan map on categories of graded modules, J. Algebra 85 (1983), no. 2, 390-398. MR 725091, https://doi.org/10.1016/0021-8693(83)90103-5

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 16E10, 16G20

Retrieve articles in all journals with MSC (2010): 16E10, 16G20


Additional Information

Colin Ingalls
Affiliation: Department of Mathematics & Statistics, University of New Brunswick-Fredericton, P.O. Box 4400, Fredericton, New Brunswick E3B 5A3, Canada
Email: cingalls@unb.ca

Charles Paquette
Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-1009
Email: charles.paquette@usherbrooke.ca

DOI: https://doi.org/10.1090/tran/6815
Received by editor(s): June 4, 2014
Received by editor(s) in revised form: August 21, 2015
Published electronically: November 28, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society