Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Variational estimates for averages and truncated singular integrals along the prime numbers


Authors: Mariusz Mirek, Bartosz Trojan and Pavel Zorin-Kranich
Journal: Trans. Amer. Math. Soc. 369 (2017), 5403-5423
MSC (2010): Primary 37A45; Secondary 42B20, 42B25
DOI: https://doi.org/10.1090/tran/6822
Published electronically: March 30, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove, in a unified way, $ r$-variational estimates, $ r>2$, on $ \ell ^{s}(\mathbb{Z})$ spaces, $ s \in (1, \infty )$, for averages and truncated singular integrals along the set of prime numbers. Moreover, we obtain an improved growth rate of the bounds as $ r\to 2$.


References [Enhancements On Off] (What's this?)

  • [1] J. Bourgain, An approach to pointwise ergodic theorems, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 204-223. MR 950982, https://doi.org/10.1007/BFb0081742
  • [2] J. Bourgain, On the maximal ergodic theorem for certain subsets of the integers, Israel J. Math. 61 (1988), no. 1, 39-72. MR 937581, https://doi.org/10.1007/BF02776301
  • [3] J. Bourgain, On the pointwise ergodic theorem on $ L^p$ for arithmetic sets, Israel J. Math. 61 (1988), no. 1, 73-84. MR 937582, https://doi.org/10.1007/BF02776302
  • [4] Jean Bourgain, Pointwise ergodic theorems for arithmetic sets, with an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 5-45. MR 1019960
  • [5] Mischa Cotlar, A unified theory of Hilbert transforms and ergodic theorems, Rev. Mat. Cuyana 1 (1955), 105-167 (1956) (English, with Spanish summary). MR 0084632
  • [6] Alexandru D. Ionescu and Stephen Wainger, $ L^p$ boundedness of discrete singular Radon transforms, J. Amer. Math. Soc. 19 (2006), no. 2, 357-383 (electronic). MR 2188130, https://doi.org/10.1090/S0894-0347-05-00508-4
  • [7] Roger L. Jones, Robert Kaufman, Joseph M. Rosenblatt, and Máté Wierdl, Oscillation in ergodic theory, Ergodic Theory Dynam. Systems 18 (1998), no. 4, 889-935. MR 1645330, https://doi.org/10.1017/S0143385798108349
  • [8] Roger L. Jones, Andreas Seeger, and James Wright, Strong variational and jump inequalities in harmonic analysis, Trans. Amer. Math. Soc. 360 (2008), no. 12, 6711-6742. MR 2434308, https://doi.org/10.1090/S0002-9947-08-04538-8
  • [9] B. Krause,
    Polynomial ergodic averages converge rapidly: Variations on a theorem of Bourgain,
    arXiv:1402.1803, 2014.
  • [10] Patrick LaVictoire, Universally $ L^1$-bad arithmetic sequences, J. Anal. Math. 113 (2011), 241-263. MR 2788358, https://doi.org/10.1007/s11854-011-0006-y
  • [11] M. Mirek, E. M. Stein, and B. Trojan, $ \ell ^p\big (\mathbb{Z}^d\big )$-estimates for discrete operators of Radon types I: Maximal functions and vector-valued estimates,
    preprint, 2015.
  • [12] M. Mirek, E. M. Stein, and B. Trojan, $ \ell ^p\big (\mathbb{Z}^d\big )$-estimates for discrete operators of Radon types II: Variational estimates for the averaging operators, to appear in Invent. Math, DOI 10.1007/s00222-017-0718-4.
  • [13] Mariusz Mirek and Bartosz Trojan, Cotlar's ergodic theorem along the prime numbers, J. Fourier Anal. Appl. 21 (2015), no. 4, 822-848. MR 3370012, https://doi.org/10.1007/s00041-015-9388-z
  • [14] M. Mirek and B. Trojan, Discrete maximal functions in higher dimensions and applications to ergodic theory, Amer. J. Math. 138 (2016), no. 6, 1495-1532.
  • [15] Melvyn B. Nathanson, Additive number theory, Graduate Texts in Mathematics, vol. 164, Springer-Verlag, New York, 1996. The classical bases. MR 1395371
  • [16] C. L. Siegel, Über die Classenzahl quadratischer Körper, Acta Arith. 1 (1935), 83-96.
  • [17] R. C. Vaughan, The Hardy-Littlewood method, Cambridge Tracts in Mathematics, vol. 80, Cambridge University Press, Cambridge-New York, 1981. MR 628618
  • [18] I. M. Vinogradov, Elements of number theory, translated by S. Kravetz, Dover Publications, Inc., New York, 1954. MR 0062138
  • [19] Arnold Walfisz, Zur additiven Zahlentheorie. II, Math. Z. 40 (1936), no. 1, 592-607 (German). MR 1545584, https://doi.org/10.1007/BF01218882
  • [20] Máté Wierdl, Pointwise ergodic theorem along the prime numbers, Israel J. Math. 64 (1988), no. 3, 315-336 (1989). MR 995574, https://doi.org/10.1007/BF02882425
  • [21] Pavel Zorin-Kranich, Variation estimates for averages along primes and polynomials, J. Funct. Anal. 268 (2015), no. 1, 210-238. MR 3280058, https://doi.org/10.1016/j.jfa.2014.10.018

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 37A45, 42B20, 42B25

Retrieve articles in all journals with MSC (2010): 37A45, 42B20, 42B25


Additional Information

Mariusz Mirek
Affiliation: Mathematical Institute, Universität Bonn, Endenicher Allee 60, D–53115 Bonn, Germany – and – Instytut Matematyczny, Uniwersytet Wrocławski, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Address at time of publication: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
Email: mirek@math.ias.edu

Bartosz Trojan
Affiliation: Instytut Matematyczny, Uniwersytet Wrocławski, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Address at time of publication: Wydział Matematyki, Politechnika Wrocławska, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
Email: bartosz.trojan@pwr.edu.pl

Pavel Zorin-Kranich
Affiliation: Mathematical Institute, Universität Bonn, Endenicher Allee 60, D–53115 Bonn, Germany
Email: pzorin@math.uni-bonn.de

DOI: https://doi.org/10.1090/tran/6822
Received by editor(s): October 13, 2014
Received by editor(s) in revised form: August 24, 2015
Published electronically: March 30, 2017
Additional Notes: The first and second authors were partially supported by NCN grant DEC–2012/05/D/ST1/ 00053.
The third author was partially supported by the ISF grant 1409/11.
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society