Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Reduction modulo $ p$ of certain semi-stable representations


Author: Chol Park
Journal: Trans. Amer. Math. Soc. 369 (2017), 5425-5466
MSC (2010): Primary 11F80
DOI: https://doi.org/10.1090/tran/6827
Published electronically: February 13, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ p>3$ be a prime number and let $ G_{\mathbb{Q}_{p}}$ be the absolute Galois group of $ \mathbb{Q}_{p}$. In this paper, we find Galois stable lattices in the $ 3$-dimensional irreducible semi-stable non-crystalline representations of $ G_{\mathbb{Q}_{p}}$ with Hodge-Tate weights $ (0,1,2)$ by constructing the corresponding strongly divisible modules. We also compute the Breuil modules corresponding to the mod $ p$ reductions of these strongly divisible modules and determine which of the original representations has an absolutely irreducible mod $ p$ reduction.


References [Enhancements On Off] (What's this?)

  • [Bre97] Christophe Breuil, Représentations $ p$-adiques semi-stables et transversalité de Griffiths, Math. Ann. 307 (1997), no. 2, 191-224 (French). MR 1428871, https://doi.org/10.1007/s002080050031
  • [Bre99] Christophe Breuil, Représentations semi-stables et modules fortement divisibles, Invent. Math. 136 (1999), no. 1, 89-122 (French). MR 1681105, https://doi.org/10.1007/s002220050305
  • [BM] Christophe Breuil and Ariane Mézard, Multiplicités modulaires et représentations de $ {\rm GL}_2({\bf Z}_p)$ et de $ {\rm Gal}(\overline {\bf Q}_p/{\bf Q}_p)$ en $ l=p$, Duke Math. J. 115 (2002), no. 2, 205-310 (French, with English and French summaries). With an appendix by Guy Henniart. MR 1944572, https://doi.org/10.1215/S0012-7094-02-11522-1
  • [Car] Xavier Caruso, Représentations semi-stables de torsion dans le case $ er<p-1$, J. Reine Angew. Math. 594 (2006), 35-92 (French, with English summary). MR 2248152, https://doi.org/10.1515/CRELLE.2006.035
  • [CHT] Laurent Clozel, Michael Harris, and Richard Taylor, Automorphy for some $ l$-adic lifts of automorphic mod $ l$ Galois representations, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 1-181. With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras. MR 2470687, https://doi.org/10.1007/s10240-008-0016-1
  • [CF] Pierre Colmez and Jean-Marc Fontaine, Construction des représentations $ p$-adiques semi-stables, Invent. Math. 140 (2000), no. 1, 1-43 (French). MR 1779803, https://doi.org/10.1007/s002220000042
  • [EG] Matthew Emerton and Toby Gee, A geometric perspective on the Breuil-Mézard conjecture, J. Inst. Math. Jussieu 13 (2014), no. 1, 183-223. MR 3134019, https://doi.org/10.1017/S147474801300011X
  • [EGH] Matthew Emerton, Toby Gee, and Florian Herzig, Weight cycling and Serre-type conjectures for unitary groups, Duke Math. J. 162 (2013), no. 9, 1649-1722. MR 3079258, https://doi.org/10.1215/00127094-2266365
  • [GK] Toby Gee and Mark Kisin, The Breuil-Mézard conjecture for potentially Barsotti-Tate representations, Forum Math. Pi 2 (2014), e1, 56. MR 3292675, https://doi.org/10.1017/fmp.2014.1
  • [Fon] Jean-Marc Fontaine, Le corps des périodes $ p$-adiques, Astérisque 223 (1994), 59-111 (French). With an appendix by Pierre Colmez; Périodes $ p$-adiques (Bures-sur-Yvette, 1988). MR 1293971
  • [Kis08] Mark Kisin, Potentially semi-stable deformation rings, J. Amer. Math. Soc. 21 (2008), no. 2, 513-546. MR 2373358, https://doi.org/10.1090/S0894-0347-07-00576-0
  • [Kis09] Mark Kisin, The Fontaine-Mazur conjecture for $ {\rm GL}_2$, J. Amer. Math. Soc. 22 (2009), no. 3, 641-690. MR 2505297, https://doi.org/10.1090/S0894-0347-09-00628-6
  • [Liu] Tong Liu, On lattices in semi-stable representations: a proof of a conjecture of Breuil, Compos. Math. 144 (2008), no. 1, 61-88. MR 2388556, https://doi.org/10.1112/S0010437X0700317X
  • [Par] Chol Park, Regular filtered $ (\varphi ,N)$-modules of dimension 3, J. Number Theory 163 (2016), 406-433. MR 3459578, https://doi.org/10.1016/j.jnt.2015.11.017
  • [Sav] David Savitt, On a conjecture of Conrad, Diamond, and Taylor, Duke Math. J. 128 (2005), no. 1, 141-197. MR 2137952, https://doi.org/10.1215/S0012-7094-04-12816-7

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11F80

Retrieve articles in all journals with MSC (2010): 11F80


Additional Information

Chol Park
Affiliation: Korea Institute for Advanced Study, 85 Hoegiro Dondaemun-gu, Seoul 02455, Republic of Korea
Email: cpark@kias.re.kr

DOI: https://doi.org/10.1090/tran/6827
Received by editor(s): July 20, 2014
Received by editor(s) in revised form: August 27, 2015
Published electronically: February 13, 2017
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society