Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The quasispecies regime for the simple genetic algorithm with ranking selection
HTML articles powered by AMS MathViewer

by Raphaël Cerf PDF
Trans. Amer. Math. Soc. 369 (2017), 6017-6071 Request permission

Abstract:

We study the simple genetic algorithm with a ranking selection mechanism (linear ranking or tournament). We denote by $\ell$ the length of the chromosomes, by $m$ the population size, by $p_C$ the crossover probability and by $p_M$ the mutation probability. We introduce a parameter $\sigma$, called the strength of the ranking selection, which measures the selection intensity of the fittest chromosome. We show that the dynamics of the genetic algorithm depends in a critical way on the parameter \[ \pi = \sigma (1-p_C)(1-p_M)^\ell .\] If $\pi <1$, then the genetic algorithm operates in a disordered regime: an advantageous mutant disappears with probability larger than $1-1/m^\beta$, where $\beta$ is a positive exponent. If $\pi >1$, then the genetic algorithm operates in a quasispecies regime: an advantageous mutant invades a positive fraction of the population with probability larger than a constant $p^*$ (which does not depend on $m$). We estimate next the probability of the occurrence of a catastrophe (the whole population falls below a fitness level which was previously reached by a positive fraction of the population). The asymptotic results suggest the following rules:

$\bullet$ $\pi =\sigma (1-p_C)(1-p_M)^\ell$ should be slightly larger than $1$;

$\bullet$ $p_M$ should be of order $1/\ell$;

$\bullet$ $m$ should be larger than $\ell \ln \ell$;

$\bullet$ the running time should be at most of exponential order in $m$.

The first condition requires that $\ell p_M +p_C< \ln \sigma$. These conclusions must be taken with great care: they come from an asymptotic regime, and it is a formidable task to understand the relevance of this regime for a real–world problem. At least, we hope that these conclusions provide interesting guidelines for the practical implementation of the simple genetic algorithm.

References
  • K. B. Athreya and P. E. Ney, Branching processes, Dover Publications, Inc., Mineola, NY, 2004. Reprint of the 1972 original [Springer, New York; MR0373040]. MR 2047480
  • Thomas Bäck, Jeannette M. de Graaf, Joost N. Kok, and Walter A. Kosters, Theory of genetic algorithms, Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 63 (1997), 161–192. MR 1621601
  • J. Bérard and A. Bienvenüe, Sharp asymptotic results for simplified mutation-selection algorithms, Ann. Appl. Probab. 13 (2003), no. 4, 1534–1568. MR 2023888, DOI 10.1214/aoap/1069786510
  • Jean Bérard, Genetic algorithms in random environments: two examples, Probab. Theory Related Fields 133 (2005), no. 1, 123–140. MR 2197140, DOI 10.1007/s00440-004-0419-y
  • Alain Cercueil and Olivier François, Sharp asymptotics for fixation times in stochastic population genetics models at low mutation probabilities, J. Statist. Phys. 110 (2003), no. 1-2, 311–332. MR 1966331, DOI 10.1023/A:1021078914200
  • Raphaël Cerf, Critical control of a genetic algorithm, ArXiv e-prints (2010).
  • Raphaël Cerf, Critical population and error threshold on the sharp peak landscape for the Wright-Fisher model, Ann. Appl. Probab. 25 (2015), no. 4, 1936–1992. MR 3348998, DOI 10.1214/14-AAP1039
  • Raphaël Cerf, Une théorie asymptotique des algorithmes génétiques, Ph.D. thesis, Université Montpellier II, March 1994.
  • Joseba Dalmau, The distribution of the quasispecies for the Wright-Fisher model on the sharp peak landscape, Stochastic Process. Appl. 125 (2015), no. 1, 272–293. MR 3274700, DOI 10.1016/j.spa.2014.08.008
  • P. Del Moral and L. Miclo, On the convergence and applications of generalized simulated annealing, SIAM J. Control Optim. 37 (1999), no. 4, 1222–1250. MR 1691939, DOI 10.1137/S0363012996313987
  • P. Del Moral and L. Miclo, Asymptotic results for genetic algorithms with applications to nonlinear estimation, Theoretical aspects of evolutionary computing (Antwerp, 1999) Nat. Comput. Ser., Springer, Berlin, 2001, pp. 439–493. MR 1937520
  • P. Del Moral and L. Miclo, Genealogies and increasing propagation of chaos for Feynman-Kac and genetic models, Ann. Appl. Probab. 11 (2001), no. 4, 1166–1198. MR 1878294
  • Pierre Del Moral and Laurent Miclo, Dynamiques recuites de type Feynman-Kac: résultats précis et conjectures, ESAIM Probab. Stat. 10 (2006), 76–140 (French, with English and French summaries). MR 2218405, DOI 10.1051/ps:2006003
  • C. Dombry, A weighted random walk model, with application to a genetic algorithm, Adv. in Appl. Probab. 39 (2007), no. 2, 550–568. MR 2343677, DOI 10.1239/aap/1183667623
  • Á. E. Eiben, E. H. L. Aarts, and K. M. van Hee, Global convergence of genetic algorithms: a Markov chain analysis, Parallel problem solving from nature (Dortmund, 1990) Lecture Notes in Comput. Sci., vol. 496, Springer, Berlin, 1991, pp. 4–12. MR 1122625
  • Manfred Eigen, Self-organization of matter and the evolution of biological macromolecules, Naturwissenschaften 58 (1971), no. 10, 465–523.
  • Manfred Eigen, John McCaskill, and Peter Schuster, The molecular quasi-species., Advances in Chemical Physics 75 (1989), 149–263.
  • Richard S. Ellis, Entropy, large deviations, and statistical mechanics, Classics in Mathematics, Springer-Verlag, Berlin, 2006. Reprint of the 1985 original. MR 2189669, DOI 10.1007/3-540-29060-5
  • Olivier Francois, An evolutionary strategy for global minimization and its markov chain analysis, Trans. Evol. Comp 2 (1998), no. 3, 77–90.
  • Olivier François, Global optimization with exploration/selection algorithms and simulated annealing, Ann. Appl. Probab. 12 (2002), no. 1, 248–271. MR 1890064, DOI 10.1214/aoap/1015961163
  • M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical systems, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260, Springer-Verlag, New York, 1998. Translated from the 1979 Russian original by Joseph Szücs. MR 1652127, DOI 10.1007/978-1-4612-0611-8
  • David Goldberg, Genetic algorithms in search, optimization and machine learning, Addison–Wesley, 1989.
  • David Greenhalgh and Stephen Marshall, Convergence criteria for genetic algorithms, SIAM J. Comput. 30 (2000), no. 1, 269–282. MR 1762714, DOI 10.1137/S009753979732565X
  • Wassily Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963), 13–30. MR 144363, DOI 10.1080/01621459.1963.10500830
  • John H. Holland, Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor, Mich., 1975. An introductory analysis with applications to biology, control, and artificial intelligence. MR 0441393
  • Martin Nilsson Jacobi and Mats Nordahl, Quasispecies and recombination, Theoretical Population Biology 70 (2006), no. 4, 479–485.
  • Yuri Kifer, Random perturbations of dynamical systems, Progress in Probability and Statistics, vol. 16, Birkhäuser Boston, Inc., Boston, MA, 1988. MR 1015933, DOI 10.1007/978-1-4615-8181-9
  • Yuri Kifer, A discrete-time version of the Wentzell-Freidlin theory, Ann. Probab. 18 (1990), no. 4, 1676–1692. MR 1071818
  • Thomas M. Liggett, Interacting particle systems, Classics in Mathematics, Springer-Verlag, Berlin, 2005. Reprint of the 1985 original. MR 2108619, DOI 10.1007/b138374
  • Matthias Löwe, On the convergence of genetic algorithms, Exposition. Math. 14 (1996), no. 4, 289–312. MR 1418026
  • J. A. Lozano, P. Larrañaga, M. Graña, and F. X. Albizuri, Genetic algorithms: bridging the convergence gap, Theoret. Comput. Sci. 229 (1999), no. 1-2, 11–22. MR 1719177, DOI 10.1016/S0304-3975(99)00090-0
  • K. L. Mak, J. S. K. Lau, and C. Wei, A Markov chain analysis of genetic algorithms with individuals having different birth and survival rates, Eng. Optim. 37 (2005), no. 6, 571–589. MR 2164917, DOI 10.1080/03052150500114263
  • Christian Mazza and Didier Piau, On the effect of selection in genetic algorithms, Random Structures Algorithms 18 (2001), no. 2, 185–200. MR 1809722, DOI 10.1002/1098-2418(200103)18:2<185::AID-RSA1005>3.0.CO;2-7
  • Liang Ming and Yu Ping Wang, Convergence rate of a class of genetic algorithms, Math. Numer. Sin. 29 (2007), no. 1, 15–26 (Chinese, with English and Chinese summaries). MR 2325674
  • Takehiko Nakama, Markov chain analysis of genetic algorithms applied to fitness functions perturbed concurrently by additive and multiplicative noise, Comput. Optim. Appl. 51 (2012), no. 2, 601–622. MR 2891909, DOI 10.1007/s10589-010-9371-1
  • Allen E. Nix and Michael D. Vose, Modeling genetic algorithms with Markov chains, Ann. Math. Artificial Intelligence 5 (1992), no. 1, 79–88. MR 1279417, DOI 10.1007/BF01530781
  • Gabriela Ochoa, Consensus sequence plots and error thresholds: Tools for visualising the structure of fitness landscape, Parallel Problem Solving from Nature – PPSN VI (Berlin), Springer, 2000, pp. 129–138.
  • Gabriela Ochoa, Error thresholds and optimal mutation rates in genetic algorithms, Ph.D. thesis, The University of Sussex, Brighton, 2001.
  • Gabriela Ochoa, Setting the mutation rate: Scope and limitations of the $1/{L}$ heuristic, GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference (New York), 9-13 July 2002, pp. 495–502.
  • Gabriela Ochoa, Error thresholds in genetic algorithms, Evol. Comput. 14 (2006), no. 2, 157–182.
  • Gabriela Ochoa, Inman Harey, and Hilary Buxton, Optimal mutation rates and selection pressure in genetic algorithms, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000) (Las Vegas, Nevada, USA), 10-12 July 2000, pp. 315–322.
  • Gabriela Ochoa and Inman Harvey, Recombination and error thresholds in finite populations, Foundations of Genetic Algorithms (FOGA-5). Preliminary Version of the Proceedings, Leiden, 1998, pp. 129–148.
  • Gabriela Ochoa, Inman Harvey, and Hilary Buxton, Error thresholds and their relation to optimal mutation rates, Advances in Artificial Life, 5th European Conference, ECAL’99, Lausanne, Switzerland, September 13-17, 1999, Proceedings, Lecture Notes in Computer Science, vol. 1674, Springer, 1999, pp. 54–63.
  • Gabriela Ochoa, Inman Harvey, and Hilary Buxton, On recombination and optimal mutation rates, Proceedings of the Genetic and Evolutionary Computation Conference (Orlando, Florida, USA), vol. 1, 13-17 July 1999, pp. 488–495.
  • L. Rigal and L. Truffet, A new genetic algorithm specifically based on mutation and selection, Adv. in Appl. Probab. 39 (2007), no. 1, 141–161. MR 2307875, DOI 10.1239/aap/1175266473
  • Miguel Rocha and José Neves, Preventing premature convergence to local optima in genetic algorithms via random offspring generation, Multiple Approaches to Intelligent Systems (Ibrahim Imam, Yves Kodratoff, Ayman El-Dessouki, and Moonis Ali, eds.), Lecture Notes in Computer Science, vol. 1611, Springer Berlin Heidelberg, 1999, pp. 127–136.
  • Alex Rogers, Adam Prügel-Bennett, and Nicholas R. Jennings, Phase transitions and symmetry breaking in genetic algorithms with crossover, Theoret. Comput. Sci. 358 (2006), no. 1, 121–141. MR 2248783, DOI 10.1016/j.tcs.2006.04.010
  • Lothar M. Schmitt, Theory of genetic algorithms, Theoret. Comput. Sci. 259 (2001), no. 1-2, 1–61. MR 1832784, DOI 10.1016/S0304-3975(00)00406-0
  • Lothar M. Schmitt, Theory of genetic algorithms. II. Models for genetic operators over the string-tensor representation of populations and convergence to global optima for arbitrary fitness function under scaling, Theoret. Comput. Sci. 310 (2004), no. 1-3, 181–231. MR 2020342, DOI 10.1016/S0304-3975(03)00393-1
  • Joe Suzuki, A Markov chain analysis of genetic algorithms: large deviation principle approach, J. Appl. Probab. 47 (2010), no. 4, 967–975. MR 2752897, DOI 10.1017/s0021900200007294
  • Erik van Nimwegen and James P. Crutchfield, Metastable evolutionary dynamics: Crossing fitness barriers or escaping via neutral paths?, Bulletin of Mathematical Biology 62 (2000), no. 5, 799–848.
  • Erik van Nimwegen and James P. Crutchfield, Optimizing epochal evolutionary search: Population-size independent theory, Computer Methods in Applied Mechanics and Engineering 186 (2000), no. 2–4, 799–848.
  • Erik van Nimwegen and James P. Crutchfield, Optimizing epochal evolutionary search: Population-size dependent theory, Machine Learning Journal 45 (2001), 77–114.
  • Erik van Nimwegen, James P. Crutchfield, and Melanie Mitchell, Finite populations induce metastability in evolutionary search, Phys. Lett. A 229 (1997), no. 3, 144–150. MR 1445497, DOI 10.1016/S0375-9601(97)00192-8
  • Erik van Nimwegen, James P. Crutchfield, and Melanie Mitchell, Statistical dynamics of the royal road genetic algorithm, Theoret. Comput. Sci. 229 (1999), no. 1-2, 41–102. MR 1719169, DOI 10.1016/S0304-3975(99)00119-X
  • Zong Ben Xu, Zan Kan Nie, and Wen Xiu Zhang, Almost sure convergence of genetic algorithms: a martingale approach, Chinese J. Comput. 25 (2002), no. 8, 785–793 (Chinese, with English and Chinese summaries). MR 1945780
  • Zongben Xu and Yong Gao, Characteristic analysis and prevention on premature convergence in genetic algorithms, Sci. China Ser. E 40 (1997), no. 2, 113–125. MR 1449818, DOI 10.1007/BF02916943
  • Xiao-yan Zhao and Zan-kan Nie, The Markov chain analysis of premature convergence of genetic algorithms, Chinese Quart. J. Math. 18 (2003), no. 4, 364–368. MR 2039188
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 60J20, 92D15
  • Retrieve articles in all journals with MSC (2010): 60J20, 92D15
Additional Information
  • Raphaël Cerf
  • Affiliation: Département de Mathématiques et Applications, École Normale Supérieure, 45 rue d’Ulm, F-75230 Paris Cedex 05, France
  • MR Author ID: 349311
  • Received by editor(s): April 8, 2015
  • Published electronically: May 1, 2017
  • © Copyright 2017 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 369 (2017), 6017-6071
  • MSC (2010): Primary 60J20; Secondary 92D15
  • DOI: https://doi.org/10.1090/tran/7170
  • MathSciNet review: 3660212