Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Homotopy principles for equivariant isomorphisms


Authors: Frank Kutzschebauch, Finnur Lárusson and Gerald W. Schwarz
Journal: Trans. Amer. Math. Soc. 369 (2017), 7251-7300
MSC (2010): Primary 32M05; Secondary 14L24, 14L30, 32E10, 32M17, 32Q28
DOI: https://doi.org/10.1090/tran/6797
Published electronically: May 5, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a reductive complex Lie group acting holomorphically on Stein manifolds $ X$ and $ Y$. Let $ p_X\colon X\to Q_X$ and $ p_Y\colon Y\to Q_Y$ be the quotient mappings. When is there an equivariant biholomorphism of $ X$ and $ Y$? A necessary condition is that the categorical quotients $ Q_X$ and $ Q_Y$ are biholomorphic and that the biholomorphism $ \phi $ sends the Luna strata of $ Q_X$ isomorphically onto the corresponding Luna strata of $ Q_Y$. Fix $ \phi $. We demonstrate two homotopy principles in this situation. The first result says that if there is a $ G$-diffeomorphism $ \Phi \colon X\to Y$, inducing $ \phi $, which is $ G$-biholomorphic on the reduced fibres of the quotient mappings, then $ \Phi $ is homotopic, through $ G$-diffeomorphisms satisfying the same conditions, to a $ G$-equivariant biholomorphism from $ X$ to $ Y$. The second result roughly says that if we have a $ G$-homeomorphism $ \Phi \colon X\to Y$ which induces a continuous family of $ G$-equivariant biholomorphisms of the fibres $ p_X{^{-1}}(q)$ and $ p_Y{^{-1}}(\phi (q))$ for $ q\in Q_X$ and if $ X$ satisfies an auxiliary property (which holds for most $ X$), then $ \Phi $ is homotopic, through $ G$-homeomorphisms satisfying the same conditions, to a $ G$-equivariant biholomorphism from $ X$ to $ Y$. Our results improve upon those of our earlier paper [J. Reine Angew. Math. 706 (2015), 193-214] and use new ideas and techniques.


References [Enhancements On Off] (What's this?)

  • [BM87a] E. Bierstone and P. D. Milman, Relations among analytic functions. I, Ann. Inst. Fourier (Grenoble) 37 (1987), no. 1, 187-239 (English, with French summary). MR 894566
  • [BM87b] E. Bierstone and P. D. Milman, Relations among analytic functions. II, Ann. Inst. Fourier (Grenoble) 37 (1987), no. 2, 49-77 (English, with French summary). MR 898931
  • [Car58] Henri Cartan, Espaces fibrés analytiques, Symposium internacional de topología algebraica [International symposium on algebraic topology], Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 97-121 (French). MR 0098196
  • [DK98] Harm Derksen and Frank Kutzschebauch, Nonlinearizable holomorphic group actions, Math. Ann. 311 (1998), no. 1, 41-53. MR 1624259, https://doi.org/10.1007/s002080050175
  • [Fis76] Gerd Fischer, Complex analytic geometry, Lecture Notes in Mathematics, Vol. 538, Springer-Verlag, Berlin-New York, 1976. MR 0430286
  • [GG73] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Mathematics, vol. 14, Springer-Verlag, New York-Heidelberg, 1973. MR 0341518
  • [GR79] Hans Grauert and Reinhold Remmert, Theory of Stein spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 236, Springer-Verlag, Berlin-New York, 1979. Translated from the German by Alan Huckleberry. MR 580152
  • [Gra57a] Hans Grauert, Approximationssätze für holomorphe Funktionen mit Werten in komplexen Räumen, Math. Ann. 133 (1957), 139-159 (German). MR 0098197
  • [Gra57b] Hans Grauert, Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen, Math. Ann. 133 (1957), 450-472 (German). MR 0098198
  • [Gra58] Hans Grauert, Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann. 135 (1958), 263-273 (German). MR 0098199
  • [Gro89] M. Gromov, Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989), no. 4, 851-897. MR 1001851, https://doi.org/10.2307/1990897
  • [Hei88] Peter Heinzner, Linear äquivariante Einbettungen Steinscher Räume, Math. Ann. 280 (1988), no. 1, 147-160 (German). MR 928302, https://doi.org/10.1007/BF01474186
  • [Huc90] Alan T. Huckleberry, Actions of groups of holomorphic transformations, Several complex variables, VI, Encyclopaedia Math. Sci., vol. 69, Springer, Berlin, 1990, pp. 143-196. MR 1095091
  • [KLS] Frank Kutzschebauch, Finnur Lárusson, and Gerald W. Schwarz, Sufficient conditions for holomorphic linearisation, Transform. Groups, arXiv:1503.00794.
  • [KLS15] Frank Kutzschebauch, Finnur Lárusson, and Gerald W. Schwarz, An Oka principle for equivariant isomorphisms, J. Reine Angew. Math. 706 (2015), 193-214. MR 3393367, https://doi.org/10.1515/crelle-2013-0064
  • [Kob98] Shoshichi Kobayashi, Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 318, Springer-Verlag, Berlin, 1998. MR 1635983
  • [Kra96] Hanspeter Kraft, Challenging problems on affine $ n$-space, Astérisque 1994/95 (1996), no. 237, Exp. No. 802, 5, 295-317. MR 1423629
  • [KS92] Hanspeter Kraft and Gerald W. Schwarz, Reductive group actions with one-dimensional quotient, Inst. Hautes Études Sci. Publ. Math. 76 (1992), 1-97. MR 1215592
  • [Lee13] John M. Lee, Introduction to smooth manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 218, Springer, New York, 2013. MR 2954043
  • [Lun73] Domingo Luna, Slices étales, Sur les groupes algébriques, Soc. Math. France, Paris, 1973, pp. 81-105. Bull. Soc. Math. France, Paris, Mémoire 33 (French). MR 0342523
  • [Lun76] Domingo Luna, Fonctions différentiables invariantes sous l'opération d'un groupe réductif, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 1, ix, 33-49 (French, with English summary). MR 0423398
  • [Rob86] Mark Roberts, A note on coherent $ G$-sheaves, Math. Ann. 275 (1986), no. 4, 573-582. MR 859331, https://doi.org/10.1007/BF01459138
  • [Sch80] Gerald W. Schwarz, Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 37-135. MR 573821
  • [Sch89] Gerald W. Schwarz, Exotic algebraic group actions, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 2, 89-94 (English, with French summary). MR 1004947
  • [Sch95] Gerald W. Schwarz, Lifting differential operators from orbit spaces, Ann. Sci. École Norm. Sup. (4) 28 (1995), no. 3, 253-305. MR 1326669
  • [Sch13] Gerald W. Schwarz, Vector fields and Luna strata, J. Pure Appl. Algebra 217 (2013), no. 1, 54-58. MR 2965903, https://doi.org/10.1016/j.jpaa.2012.04.008
  • [Sch14] Gerald W. Schwarz, Quotients, automorphisms and differential operators, J. Lond. Math. Soc. (2) 89 (2014), no. 1, 169-193. MR 3174739, https://doi.org/10.1112/jlms/jdt056
  • [Sno82] Dennis M. Snow, Reductive group actions on Stein spaces, Math. Ann. 259 (1982), no. 1, 79-97. MR 656653, https://doi.org/10.1007/BF01456830
  • [Trè67] François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. MR 0225131

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 32M05, 14L24, 14L30, 32E10, 32M17, 32Q28

Retrieve articles in all journals with MSC (2010): 32M05, 14L24, 14L30, 32E10, 32M17, 32Q28


Additional Information

Frank Kutzschebauch
Affiliation: Institute of Mathematics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
Email: frank.kutzschebauch@math.unibe.ch

Finnur Lárusson
Affiliation: School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
Email: finnur.larusson@adelaide.edu.au

Gerald W. Schwarz
Affiliation: Department of Mathematics, Brandeis University, Waltham, Massachusetts 02454-9110
Email: schwarz@brandeis.edu

DOI: https://doi.org/10.1090/tran/6797
Keywords: Oka principle, geometric invariant theory, Stein manifold, complex Lie group, reductive group, categorical quotient, Luna stratification.
Received by editor(s): April 23, 2015
Received by editor(s) in revised form: January 13, 2016
Published electronically: May 5, 2017
Additional Notes: The first author was partially supported by Schweizerischer Nationalfond grant 200021-140235/1
The first and third authors thank the University of Adelaide for hospitality and the Australian Research Council for financial support
The second author was partially supported by Australian Research Council grants DP120104110 and DP150103442
The second and third authors thank the University of Bern for hospitality and financial support
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society