Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Metric mean dimension for algebraic actions of Sofic groups


Author: Ben Hayes
Journal: Trans. Amer. Math. Soc. 369 (2017), 6853-6897
MSC (2010): Primary 37A35, 37A55, 37B40; Secondary 22D25
DOI: https://doi.org/10.1090/tran/6834
Published electronically: March 30, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if $ \Gamma $ is a sofic group and $ A$ is a finitely generated $ \mathbb{Z}(\Gamma )$-module, then the metric mean dimension of $ \Gamma \curvearrowright \widehat {A},$ in the sense of Hanfeng Li, is equal to the von Neumann-Lück rank of $ A.$ This partially extends the results of Hanfeng Li and Bingbing Liang from the case of amenable groups to the case of sofic groups. Additionally we show that the mean dimension of $ \Gamma \curvearrowright \widehat {A}$ is the von Neumann-Lück rank of $ A$ if $ A$ is finitely presented and $ \Gamma $ is residually finite. It turns out that our approach naturally leads to a notion of $ p$-metric mean dimension, which is in between mean dimension and the usual metric mean dimension. This can be seen as an obstruction to the equality of mean dimension and metric mean dimension. While we cannot decide if mean dimension is the same as metric mean dimension for algebraic actions, we show in the metric case that for all $ p$ the $ p$-metric mean dimension coincides with the von Neumann-Lück rank of the dual module.


References [Enhancements On Off] (What's this?)

  • [1] Lewis Bowen, Measure conjugacy invariants for actions of countable sofic groups, J. Amer. Math. Soc. 23 (2010), no. 1, 217-245. MR 2552252, https://doi.org/10.1090/S0894-0347-09-00637-7
  • [2] Lewis Bowen, Entropy for expansive algebraic actions of residually finite groups, Ergodic Theory Dynam. Systems 31 (2011), no. 3, 703-718. MR 2794944, https://doi.org/10.1017/S0143385710000179
  • [3] Lewis Bowen and Hanfeng Li, Harmonic models and spanning forests of residually finite groups, J. Funct. Anal. 263 (2012), no. 7, 1769-1808. MR 2956925, https://doi.org/10.1016/j.jfa.2012.06.015
  • [4] Nathanial P. Brown and Narutaka Ozawa, $ C^*$-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence, RI, 2008. MR 2391387
  • [5] Nhan-Phu Chung and Andreas Thom, Some remarks on the entropy for algebraic actions of amenable groups, Trans. Amer. Math. Soc. 367 (2015), no. 12, 8579-8595. MR 3403066, https://doi.org/10.1090/S0002-9947-2014-06348-4
  • [6] Christopher Deninger, Fuglede-Kadison determinants and entropy for actions of discrete amenable groups, J. Amer. Math. Soc. 19 (2006), no. 3, 737-758 (electronic). MR 2220105, https://doi.org/10.1090/S0894-0347-06-00519-4
  • [7] Christopher Deninger and Klaus Schmidt, Expansive algebraic actions of discrete residually finite amenable groups and their entropy, Ergodic Theory Dynam. Systems 27 (2007), no. 3, 769-786. MR 2322178, https://doi.org/10.1017/S0143385706000939
  • [8] Ken Dykema, David Kerr, and Mikaël Pichot, Sofic dimension for discrete measured groupoids, Trans. Amer. Math. Soc. 366 (2014), no. 2, 707-748. MR 3130315, https://doi.org/10.1090/S0002-9947-2013-05987-9
  • [9] K. Dykema, D. Kerr, and M. Pichot, Orbit equivalence and sofic approximation, arXiv:1102.2556
  • [10] Gábor Elek and Endre Szabó, On sofic groups, J. Group Theory 9 (2006), no. 2, 161-171. MR 2220572, https://doi.org/10.1515/JGT.2006.011
  • [11] Gábor Elek and Endre Szabó, Sofic representations of amenable groups, Proc. Amer. Math. Soc. 139 (2011), no. 12, 4285-4291. MR 2823074, https://doi.org/10.1090/S0002-9939-2011-11222-X
  • [12] Antoine Gournay, Widths of $ \ell ^p$ balls, Houston J. Math. 37 (2011), no. 4, 1227-1248. MR 2875268
  • [13] Misha Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps. I, Math. Phys. Anal. Geom. 2 (1999), no. 4, 323-415. MR 1742309, https://doi.org/10.1023/A:1009841100168
  • [14] Ben Hayes, An $ l^p$-version of von Neumann dimension for Banach space representations of sofic groups, J. Funct. Anal. 266 (2014), no. 2, 989-1040. MR 3132735, https://doi.org/10.1016/j.jfa.2013.09.014
  • [15] Ben Hayes, An $ l^p$-version of von Neumann dimension for Banach space representations of sofic groups II, J. Funct. Anal. 269 (2015), no. 8, 2365-2426. MR 3390007, https://doi.org/10.1016/j.jfa.2015.07.013
  • [16] B. Hayes, An $ l^{p}$-version of von Neumann dimension for representations of equivalence relations, arXiv:1302.2293
  • [17] Ben Hayes, Fuglede-Kadison determinants and sofic entropy, Geom. Funct. Anal. 26 (2016), no. 2, 520-606. MR 3513879, https://doi.org/10.1007/s00039-016-0370-y
  • [18] David Kerr and Hanfeng Li, Entropy and the variational principle for actions of sofic groups, Invent. Math. 186 (2011), no. 3, 501-558. MR 2854085, https://doi.org/10.1007/s00222-011-0324-9
  • [19] David Kerr and Hanfeng Li, Combinatorial independence and sofic entropy, Commun. Math. Stat. 1 (2013), no. 2, 213-257. MR 3197860
  • [20] Hanfeng Li, Sofic mean dimension, Adv. Math. 244 (2013), 570-604. MR 3077882, https://doi.org/10.1016/j.aim.2013.05.005
  • [21] Hanfeng Li, Compact group automorphisms, addition formulas and Fuglede-Kadison determinants, Ann. of Math. (2) 176 (2012), no. 1, 303-347. MR 2925385, https://doi.org/10.4007/annals.2012.176.1.5
  • [22] H. Li and B. Liang, Mean dimension, mean rank, and von Neumann-Lück rank, to appear in J. Reine. Angew. Math.
  • [23] Hanfeng Li and Andreas Thom, Entropy, determinants, and $ L^2$-torsion, J. Amer. Math. Soc. 27 (2014), no. 1, 239-292. MR 3110799, https://doi.org/10.1090/S0894-0347-2013-00778-X
  • [24] Elon Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math. 89 (1999), 227-262 (2000). MR 1793417
  • [25] Elon Lindenstrauss and Benjamin Weiss, Mean topological dimension, Israel J. Math. 115 (2000), 1-24. MR 1749670, https://doi.org/10.1007/BF02810577
  • [26] Justin Peters, Entropy on discrete abelian groups, Adv. in Math. 33 (1979), no. 1, 1-13. MR 540634, https://doi.org/10.1016/S0001-8708(79)80007-9
  • [27] Gilles Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989. MR 1036275
  • [28] Douglas Lind, Klaus Schmidt, and Evgeny Verbitskiy, Entropy and growth rate of periodic points of algebraic $ \mathbb{Z}^d$-actions, Dynamical numbers--interplay between dynamical systems and number theory, Contemp. Math., vol. 532, Amer. Math. Soc., Providence, RI, 2010, pp. 195-211. MR 2762141, https://doi.org/10.1090/conm/532/10491
  • [29] Douglas Lind, Klaus Schmidt, and Tom Ward, Mahler measure and entropy for commuting automorphisms of compact groups, Invent. Math. 101 (1990), no. 3, 593-629. MR 1062797, https://doi.org/10.1007/BF01231517
  • [30] Donald S. Ornstein and Benjamin Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math. 48 (1987), 1-141. MR 910005, https://doi.org/10.1007/BF02790325
  • [31] Donald S. Passman, The algebraic structure of group rings, Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1985. Reprint of the 1977 original. MR 798076
  • [32] Vladimir G. Pestov, Hyperlinear and sofic groups: a brief guide, Bull. Symbolic Logic 14 (2008), no. 4, 449-480. MR 2460675, https://doi.org/10.2178/bsl/1231081461
  • [33] Klaus Schmidt, Dynamical systems of algebraic origin, Progress in Mathematics, vol. 128, Birkhäuser Verlag, Basel, 1995. MR 1345152
  • [34] Masaki Tsukamoto, Deformation of Brody curves and mean dimension, Ergodic Theory Dynam. Systems 29 (2009), no. 5, 1641-1657. MR 2545021, https://doi.org/10.1017/S014338570800076X
  • [35] Wolfgang Lück, $ L^2$-invariants: theory and applications to geometry and $ K$-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 44, Springer-Verlag, Berlin, 2002. MR 1926649
  • [36] Wolfgang Lück, Dimension theory of arbitrary modules over finite von Neumann algebras and $ L^2$-Betti numbers. I. Foundations, J. Reine Angew. Math. 495 (1998), 135-162. MR 1603853, https://doi.org/10.1515/crll.1998.015
  • [37] W. Lück, Approximating $ L^2$-invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4 (1994), no. 4, 455-481. MR 1280122, https://doi.org/10.1007/BF01896404
  • [38] S. A. Juzvinskiĭ, Calculation of the entropy of a group-endomorphism, Sibirsk. Mat. Z. 8 (1967), 230-239 (Russian). MR 0214726

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 37A35, 37A55, 37B40, 22D25

Retrieve articles in all journals with MSC (2010): 37A35, 37A55, 37B40, 22D25


Additional Information

Ben Hayes
Affiliation: Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, California 90095-155
Address at time of publication: Department of Mathematics, 1326 Stevenson Center, Vanderbilt University, Nashville, Tennessee 37240
Email: benjamin.r.hayes@vanderbilt.edu

DOI: https://doi.org/10.1090/tran/6834
Keywords: Sofic groups, metric mean dimension, von Neumann rank
Received by editor(s): February 11, 2015
Received by editor(s) in revised form: June 21, 2015, and September 28, 2015
Published electronically: March 30, 2017
Additional Notes: The author is grateful for support from NSF Grants DMS-1161411 and DMS-0900776
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society