Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the stochastic regularity of distorted Brownian motions


Authors: Jiyong Shin and Gerald Trutnau
Journal: Trans. Amer. Math. Soc. 369 (2017), 7883-7915
MSC (2010): Primary 60J60, 60J35, 31C25, 31C15; Secondary 60J55, 35J25
DOI: https://doi.org/10.1090/tran/6887
Published electronically: April 15, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We systematically develop general tools to apply Fukushima's absolute continuity condition. These tools comprise methods to obtain a Hunt process on a locally compact separable metric state space whose transition function has a density w.r.t. the reference measure and methods to estimate drift potentials comfortably. We then apply our results to distorted Brownian motions and construct weak solutions to singular stochastic differential equations, i.e., equations with possibly unbounded and discontinuous drift and reflection terms which may be the sum of countably many local times. The solutions can start from any point of the explicitly specified state space. We consider different kinds of weights, like Muckenhoupt $ A_2$ weights and weights with moderate growth at singularities as well as different kinds of (multiple) boundary conditions. Our approach leads in particular to the construction and explicit identification of countably skew reflected and normally reflected Brownian motions with singular drift in bounded and unbounded multi-dimensional domains.


References [Enhancements On Off] (What's this?)

  • [1] Robert A. Adams and John J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. MR 2424078 (2009e:46025)
  • [2] Rami Atar and Amarjit Budhiraja, On the multi-dimensional skew Brownian motion, Stochastic Process. Appl. 125 (2015), no. 5, 1911-1925. MR 3315617, https://doi.org/10.1016/j.spa.2014.12.001
  • [3] Sergio Albeverio, Raphael Høegh-Krohn, and Ludwig Streit, Energy forms, Hamiltonians, and distorted Brownian paths, J. Mathematical Phys. 18 (1977), no. 5, 907-917. MR 0446236 (56 #4564)
  • [4] S. Albeverio and M. Röckner, Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms, Probab. Theory Related Fields 89 (1991), no. 3, 347-386. MR 1113223 (92k:60123), https://doi.org/10.1007/BF01198791
  • [5] Sergio Albeverio, Yuri G. Kondratiev, and Michael Röckner, Canonical Dirichlet operator and distorted Brownian motion on Poisson spaces, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 11, 1179-1184 (English, with English and French summaries). MR 1423447 (97k:58177)
  • [6] Sergio Albeverio, Yuri Kondratiev, and Michael Röckner, Strong Feller properties for distorted Brownian motion and applications to finite particle systems with singular interactions, Finite and infinite dimensional analysis in honor of Leonard Gross (New Orleans, LA, 2001) Contemp. Math., vol. 317, Amer. Math. Soc., Providence, RI, 2003, pp. 15-35. MR 1966885 (2004c:60221), https://doi.org/10.1090/conm/317/05517
  • [7] Sebastian Andres and Max-K. von Renesse, Uniqueness and regularity for a system of interacting Bessel processes via the Muckenhoupt condition, Trans. Amer. Math. Soc. 364 (2012), no. 3, 1413-1426. MR 2869181, https://doi.org/10.1090/S0002-9947-2011-05457-7
  • [8] Martin T. Barlow, Richard F. Bass, and Changfeng Gui, The Liouville property and a conjecture of De Giorgi, Comm. Pure Appl. Math. 53 (2000), no. 8, 1007-1038. MR 1755949 (2001m:35095), https://doi.org/10.1002/1097-0312(200008)53:8$ \langle $1007::AID-CPA3$ \rangle $3.3.CO;2-L
  • [9] Benedict Baur and Martin Grothaus, Construction and strong Feller property of distorted elliptic diffusion with reflecting boundary, Potential Anal. 40 (2014), no. 4, 391-425. MR 3201988, https://doi.org/10.1007/s11118-013-9355-8
  • [10] Benedict Baur, Martin Grothaus, and Patrik Stilgenbauer, Construction of $ {\mathcal {L}}^{p}$-strong Feller processes via Dirichlet forms and applications to elliptic diffusions, Potential Anal. 38 (2013), no. 4, 1233-1258. MR 3042702, https://doi.org/10.1007/s11118-012-9314-9
  • [11] Richard F. Bass and Pei Hsu, Some potential theory for reflecting Brownian motion in Hölder and Lipschitz domains, Ann. Probab. 19 (1991), no. 2, 486-508. MR 1106272 (92i:60142)
  • [12] M. Biroli and U. Mosco, A Saint-Venant type principle for Dirichlet forms on discontinuous media, Ann. Mat. Pura Appl. (4) 169 (1995), 125-181 (English, with English and Italian summaries). MR 1378473 (97b:35082), https://doi.org/10.1007/BF01759352
  • [13] R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR 0264757 (41 #9348)
  • [14] Nicolas Bouleau and Francis Hirsch, Dirichlet forms and analysis on Wiener space, de Gruyter Studies in Mathematics, vol. 14, Walter de Gruyter & Co., Berlin, 1991. MR 1133391 (93e:60107)
  • [15] E. A. Carlen, S. Kusuoka, and D. W. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 2, suppl., 245-287 (English, with French summary). MR 898496 (88i:35066)
  • [16] Zhen Qing Chen, On reflecting diffusion processes and Skorokhod decompositions, Probab. Theory Related Fields 94 (1993), no. 3, 281-315. MR 1198650 (94b:60090), https://doi.org/10.1007/BF01199246
  • [17] Kai Lai Chung and John B. Walsh, Markov processes, Brownian motion, and time symmetry, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 249, Springer, New York, 2005. MR 2152573 (2006j:60003)
  • [18] Andreas Eberle, Uniqueness and non-uniqueness of semigroups generated by singular diffusion operators, Lecture Notes in Mathematics, vol. 1718, Springer-Verlag, Berlin, 1999. MR 1734956 (2001c:60122)
  • [19] Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660 (93f:28001)
  • [20] Torben Fattler and Martin Grothaus, Strong Feller properties for distorted Brownian motion with reflecting boundary condition and an application to continuous $ N$-particle systems with singular interactions, J. Funct. Anal. 246 (2007), no. 2, 217-241. MR 2321042 (2008b:60178), https://doi.org/10.1016/j.jfa.2007.01.014
  • [21] Torben Fattler and Martin Grothaus, Construction of elliptic diffusions with reflecting boundary condition and an application to continuous $ N$-particle systems with singular interactions, Proc. Edinb. Math. Soc. (2) 51 (2008), no. 2, 337-362. MR 2465912 (2010b:60217), https://doi.org/10.1017/S001309150600160X
  • [22] M. Fukushima, On a stochastic calculus related to Dirichlet forms and distorted Brownian motions, Phys. Rep. 77 (1981), no. 3, 255-262. New stochasitic methods in physics. MR 639031, https://doi.org/10.1016/0370-1573(81)90077-6
  • [23] Masatoshi Fukushima, Energy forms and diffusion processes, Mathematics + physics. Vol. 1, World Sci. Publishing, Singapore, 1985, pp. 65-97. MR 849343 (87m:60176), https://doi.org/10.1142/9789814415125_0002
  • [24] Masatoshi Fukushima, On a decomposition of additive functionals in the strict sense for a symmetric Markov process, Dirichlet forms and stochastic processes (Beijing, 1993) de Gruyter, Berlin, 1995, pp. 155-169. MR 1366431 (97k:60210)
  • [25] Masatoshi Fukushima, On a strict decomposition of additive functionals for symmetric diffusion processes, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), no. 9, 277-281. MR 1313177 (96b:60201)
  • [26] Masatoshi Fukushima, On semi-martingale characterizations of functionals of symmetric Markov processes, Electron. J. Probab. 4 (1999), no. 18, 32 pp. (electronic). MR 1741537 (2001b:60091), https://doi.org/10.1214/EJP.v4-55
  • [27] Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda, Dirichlet forms and symmetric Markov processes, Second revised and extended edition, de Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 2011. MR 2778606 (2011k:60249)
  • [28] Masatoshi Fukushima and Matsuyo Tomisaki, Construction and decomposition of reflecting diffusions on Lipschitz domains with Hölder cusps, Probab. Theory Related Fields 106 (1996), no. 4, 521-557. MR 1421991 (98d:60157), https://doi.org/10.1007/s004400050074
  • [29] A. Grigor'yan and J. Hu, Upper bounds of heat kernels on doubling spaces, preprint, 57 pages (2010).
  • [30] Dorothee D. Haroske, Sobolev spaces with Muckenhoupt weights, singularities and inequalities, Georgian Math. J. 15 (2008), no. 2, 263-280. MR 2428470 (2009m:46049)
  • [31] Z. M. Ma and M. Röckner, Introduction to the Theory of (Non-symmetric) Dirichlet Forms, Berlin, Springer (1992).
  • [32] Yoshihiro Mizuta, Potential theory in Euclidean spaces, GAKUTO International Series. Mathematical Sciences and Applications, 6, Gakkōtosho Co., Ltd., Tokyo, 1996. MR 1428685 (98e:31001)
  • [33] Yōichi Ōshima, Some singular diffusion processes and their associated stochastic differential equations, Z. Wahrsch. Verw. Gebiete 59 (1982), no. 2, 249-276. MR 650616 (83h:60083), https://doi.org/10.1007/BF00531748
  • [34] Youssef Ouknine, Francesco Russo, and Gerald Trutnau, On countably skewed Brownian motion with accumulation point, Electron. J. Probab. 20 (2015), no. 82, 27. MR 3383566
  • [35] Dražen Pantić, Stochastic calculus on distorted Brownian motion, J. Math. Phys. 29 (1988), no. 1, 207-209. MR 921783 (89d:60148), https://doi.org/10.1063/1.528174
  • [36] É. Pardoux and R. J. Williams, Symmetric reflected diffusions, Ann. Inst. H. Poincaré Probab. Statist. 30 (1994), no. 1, 13-62 (English, with English and French summaries). MR 1262891 (95h:60117)
  • [37] N. I. Portenko, Generalized diffusion processes, Translations of Mathematical Monographs, vol. 83, American Mathematical Society, Providence, RI, 1990. Translated from the Russian by H. H. McFaden. MR 1104660 (92b:60074)
  • [38] Andrea Posilicano, Convergence of distorted Brownian motions and singular Hamiltonians, Potential Anal. 5 (1996), no. 3, 241-271. MR 1389497 (97j:60143), https://doi.org/10.1007/BF00282363
  • [39] D. Revuz and M. Yor, Continuous martingales and Brownian motion, Springer Verlag, (2005).
  • [40] Jiyong Shin and Gerald Trutnau, Pointwise weak existence of distorted skew Brownian motion with respect to discontinuous Muckenhoupt weights, Rev. Roumaine Math. Pures Appl. 59 (2014), no. 1, 157-170. MR 3296841
  • [41] Karl-Theodor Sturm, Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math. 32 (1995), no. 2, 275-312. MR 1355744 (97b:35003)
  • [42] K. T. Sturm, Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl. (9) 75 (1996), no. 3, 273-297. MR 1387522 (97k:31010)
  • [43] K.-T. Sturm, Sharp estimates for capacities and applications to symmetric diffusions, Probab. Theory Related Fields 103 (1995), no. 1, 73-89. MR 1347171 (97a:31004), https://doi.org/10.1007/BF01199032
  • [44] Satoshi Takanobu, On the existence of solutions of stochastic differential equations with singular drifts, Probab. Theory Related Fields 74 (1987), no. 2, 295-315. MR 871257 (88c:60116), https://doi.org/10.1007/BF00569995
  • [45] Matsuyo Tomisaki, A construction of diffusion processes with singular product measures, Z. Wahrsch. Verw. Gebiete 53 (1980), no. 1, 51-70. MR 576897 (83h:60084), https://doi.org/10.1007/BF00531611
  • [46] Gerald Trutnau, Skorokhod decomposition of reflected diffusions on bounded Lipschitz domains with singular non-reflection part, Probab. Theory Related Fields 127 (2003), no. 4, 455-495. MR 2021192 (2004j:60173), https://doi.org/10.1007/s00440-003-0296-9
  • [47] Gerald Trutnau, On a class of non-symmetric diffusions containing fully nonsymmetric distorted Brownian motions, Forum Math. 15 (2003), no. 3, 409-437. MR 1977889 (2004a:31007), https://doi.org/10.1515/form.2003.022
  • [48] Gerald Trutnau, Multidimensional skew reflected diffusions, Stochastic analysis: classical and quantum, World Sci. Publ., Hackensack, NJ, 2005, pp. 228-244. MR 2233163 (2007b:60200)
  • [49] Bengt Ove Turesson, Nonlinear potential theory and weighted Sobolev spaces, Lecture Notes in Mathematics, vol. 1736, Springer-Verlag, Berlin, 2000. MR 1774162 (2002f:31027)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 60J60, 60J35, 31C25, 31C15, 60J55, 35J25

Retrieve articles in all journals with MSC (2010): 60J60, 60J35, 31C25, 31C15, 60J55, 35J25


Additional Information

Jiyong Shin
Affiliation: School of Mathematics, Korea Institute for Advanced Study, 85 Hoegiro Dongdae- mungu, Seoul 02445, South Korea
Email: yonshin2@kias.re.kr

Gerald Trutnau
Affiliation: Department of Mathematical Sciences and Research Institute of Mathematics of Seoul National University, San56-1 Shinrim-dong Kwanak-gu, Seoul 151-747, South Korea
Email: trutnau@snu.ac.kr

DOI: https://doi.org/10.1090/tran/6887
Keywords: Transition functions, singular diffusions, skew Brownian motion, reflected Brownian motion, Feller processes.
Received by editor(s): August 17, 2014
Received by editor(s) in revised form: November 30, 2015
Published electronically: April 15, 2016
Additional Notes: This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2012R1A1A2006987).
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society