Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Patching and weak approximation in isometry groups


Authors: Eva Bayer-Fluckiger and Uriya A. First
Journal: Trans. Amer. Math. Soc. 369 (2017), 7999-8035
MSC (2010): Primary 11E39, 11E41, 16H10
DOI: https://doi.org/10.1090/tran/6921
Published electronically: May 11, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a semilocal principal ideal domain. Two algebraic objects over $ R$ in which scalar extension makes sense (e.g. quadratic spaces) are said to be of the same genus if they become isomorphic after extending scalars to all completions of $ R$ and its fraction field. We prove that the number of isomorphism classes in the genus of unimodular quadratic spaces over (not necessarily commutative) $ R$-orders is always a finite power of $ 2$, and under further assumptions, e.g., that the order is hereditary, this number is $ 1$. The same result is also shown for related objects, e.g., systems of sesquilinear forms. A key ingredient in the proof is a weak approximation theorem for groups of isometries, which is valid over any (topological) base field, and even over semilocal base rings.


References [Enhancements On Off] (What's this?)

  • [1] Maurice Auslander and Oscar Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409. MR 0121392, https://doi.org/10.2307/1993378
  • [2] Maurice Auslander and Oscar Goldman, Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 1-24. MR 0117252, https://doi.org/10.2307/1993361
  • [3] Paul Balmer, Witt groups, Handbook of $ K$-theory. Vol. 1, 2, Springer, Berlin, 2005, pp. 539-576. MR 2181829, https://doi.org/10.1007/978-3-540-27855-9_11
  • [4] Hyman Bass, Unitary algebraic $ K$-theory, Algebraic K-theory, III: Hermitian K-theory and geometric applications (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., vol. 343, Springer, Berlin, 1973, pp. 57-265. MR 0371994
  • [5] Eva Bayer-Fluckiger and Laura Fainsilber, Non-unimodular Hermitian forms, Invent. Math. 123 (1996), no. 2, 233-240. MR 1374198, https://doi.org/10.1007/s002220050024
  • [6] Eva Bayer-Fluckiger and Uriya A. First, Rationally isomorphic hermitian forms and torsors of some non-reductive groups, Adv. Math. 312 (2017), 150-184. MR 3635808, https://doi.org/10.1016/j.aim.2017.03.012
  • [7] Eva Bayer-Fluckiger, Uriya A. First, and Daniel A. Moldovan, Hermitian categories, extension of scalars and systems of sesquilinear forms, Pacific J. Math. 270 (2014), no. 1, 1-26. MR 3245846, https://doi.org/10.2140/pjm.2014.270.1
  • [8] Eva Bayer-Fluckiger, Cherry Kearton, and Stephen M. J. Wilson, Hermitian forms in additive categories: finiteness results, J. Algebra 123 (1989), no. 2, 336-350. MR 1000491, https://doi.org/10.1016/0021-8693(89)90050-1
  • [9] Eva Bayer-Fluckiger and Hendrick W. Lenstra Jr., Forms in odd degree extensions and self-dual normal bases, Amer. J. Math. 112 (1990), no. 3, 359-373. MR 1055648, https://doi.org/10.2307/2374746
  • [10] Eva Bayer-Fluckiger and Daniel Arnold Moldovan, Sesquilinear forms over rings with involution, J. Pure Appl. Algebra 218 (2014), no. 3, 417-423. MR 3124208, https://doi.org/10.1016/j.jpaa.2013.06.012
  • [11] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822
  • [12] Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4-6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. MR 1890629
  • [13] Jean-Louis Colliot-Thélène and Manuel Ojanguren, Espaces principaux homogènes localement triviaux, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 97-122 (French). MR 1179077
  • [14] Brian Conrad, Weil and Grothendieck approaches to adelic points, Enseign. Math. (2) 58 (2012), no. 1-2, 61-97. MR 2985010, https://doi.org/10.4171/LEM/58-1-3
  • [15] Otto Endler, Valuation theory, Springer-Verlag, New York-Heidelberg, 1972. To the memory of Wolfgang Krull (26 August 1899-12 April 1971); Universitext. MR 0357379
  • [16] Daniel Ferrand and Michel Raynaud, Fibres formelles d'un anneau local noethérien, Ann. Sci. École Norm. Sup. (4) 3 (1970), 295-311 (French). MR 0272779
  • [17] Uriya A. First, Witt's extension theorem for quadratic spaces over semiperfect rings, J. Pure Appl. Algebra 219 (2015), no. 12, 5673-5696. MR 3390045, https://doi.org/10.1016/j.jpaa.2015.05.039
  • [18] Philippe Gille, Torseurs sur la droite affine, Transform. Groups 7 (2002), no. 3, 231-245. MR 1923972, https://doi.org/10.1007/s00031-002-0012-3
  • [19] Alexander Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361. MR 0238860
  • [20] David Harbater, Julia Hartmann, and Daniel Krashen, Applications of patching to quadratic forms and central simple algebras, Invent. Math. 178 (2009), no. 2, 231-263. MR 2545681, https://doi.org/10.1007/s00222-009-0195-5
  • [21] Hiroaki Hijikata and Kenji Nishida, Bass orders in nonsemisimple algebras, J. Math. Kyoto Univ. 34 (1994), no. 4, 797-837. MR 1311621, https://doi.org/10.1215/kjm/1250518887
  • [22] John S. Kauta, Weak crossed-product orders over valuation rings, J. Algebra 402 (2014), 319-350. MR 3160425, https://doi.org/10.1016/j.jalgebra.2013.12.014
  • [23] Bernhard Keller, A remark on quadratic spaces over noncommutative semilocal rings, Math. Z. 198 (1988), no. 1, 63-71. MR 938029, https://doi.org/10.1007/BF01183039
  • [24] Max-Albert Knus, Quadratic and Hermitian forms over rings, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 294, Springer-Verlag, Berlin, 1991. With a foreword by I. Bertuccioni. MR 1096299
  • [25] Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits. MR 1632779
  • [26] Tsit Yuen Lam, Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999. MR 1653294
  • [27] Yevsey A. Nisnevich, Etale cohomology and arithmetic of semisimple groups, ProQuest LLC, Ann Arbor, MI, 1982. Thesis (Ph.D.)-Harvard University. MR 2632405
  • [28] Yevsey A. Nisnevich, Espaces homogènes principaux rationnellement triviaux et arithmétique des schémas en groupes réductifs sur les anneaux de Dedekind, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 1, 5-8. MR 756297
  • [29] O. Timothy O'Meara, Introduction to quadratic forms, Classics in Mathematics, Springer-Verlag, Berlin, 2000. Reprint of the 1973 edition. MR 1754311
  • [30] Heinz-Georg Quebbemann, Winfried Scharlau, and Manfred Schulte, Quadratic and Hermitian forms in additive and abelian categories, J. Algebra 59 (1979), no. 2, 264-289. MR 543249, https://doi.org/10.1016/0021-8693(79)90126-1
  • [31] Irving Reiner, Maximal orders, London Mathematical Society Monographs. New Series, vol. 28, The Clarendon Press, Oxford University Press, Oxford, 2003. Corrected reprint of the 1975 original; With a foreword by M. J. Taylor. MR 1972204
  • [32] Hans J. Reiter, Witt's theorem for noncommutative semilocal rings, J. Algebra 35 (1975), 483-499. MR 0387276, https://doi.org/10.1016/0021-8693(75)90061-7
  • [33] Louis H. Rowen, Ring theory. Vol. I, Pure and Applied Mathematics, vol. 127, Academic Press, Inc., Boston, MA, 1988. MR 940245
  • [34] David J. Saltman, Lectures on division algebras, CBMS Regional Conference Series in Mathematics, vol. 94, Published by American Mathematical Society, Providence, RI; on behalf of Conference Board of the Mathematical Sciences, Washington, DC, 1999. MR 1692654
  • [35] Winfried Scharlau, Quadratic and Hermitian forms, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 270, Springer-Verlag, Berlin, 1985. MR 770063
  • [36] Nguyêñ Quôć Thăńg, On weak approximation in algebraic groups and related varieties defined by systems of forms, J. Pure Appl. Algebra 113 (1996), no. 1, 67-90. MR 1411647, https://doi.org/10.1016/0022-4049(95)00141-7
  • [37] Seth Warner, Topological rings, North-Holland Mathematics Studies, vol. 178, North-Holland Publishing Co., Amsterdam, 1993. MR 1240057
  • [38] William C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics, vol. 66, Springer-Verlag, New York-Berlin, 1979. MR 547117

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11E39, 11E41, 16H10

Retrieve articles in all journals with MSC (2010): 11E39, 11E41, 16H10


Additional Information

Eva Bayer-Fluckiger
Affiliation: École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Uriya A. First
Affiliation: Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada

DOI: https://doi.org/10.1090/tran/6921
Keywords: Quadratic form, hermitian form, algebraic patching, weak approximation, genus, order, hereditary order, sesquilinear form, hermitian category
Received by editor(s): April 7, 2015
Received by editor(s) in revised form: December 15, 2015
Published electronically: May 11, 2017
Additional Notes: The second-named author performed this research at EPFL, the Hebrew University of Jerusalem and the University of British Columbia (in this order), where he was supported by an SNFS grant #IZK0Z2_151061, an ERC grant #226135, and the UBC Mathematics Department, respectively
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society