Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Generic vanishing and classification of irregular surfaces in positive characteristics


Author: Yuan Wang
Journal: Trans. Amer. Math. Soc. 369 (2017), 8559-8585
MSC (2010): Primary 14F17, 14J29; Secondary 14K30
DOI: https://doi.org/10.1090/tran/6914
Published electronically: June 27, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We establish a generic vanishing theorem for surfaces in characteristic $ p$ that lift to $ W_2(k)$ and use it for classification of surfaces of general type with Euler characteristic $ 1$ and large Albanese dimension.


References [Enhancements On Off] (What's this?)

  • [Bea82] A. Beauville, L'inegalité $ p_g\ge 2q-4$ pour les surfaces de type général, Appendix to [Deb82], 1982.
  • [Bea96] Arnaud Beauville, Complex algebraic surfaces, 2nd ed., translated from the 1978 French original by R. Barlow, with assistance from N. I. Shepherd-Barron and M. Reid, London Mathematical Society Student Texts, vol. 34, Cambridge University Press, Cambridge, 1996. MR 1406314
  • [BM76] E. Bombieri and D. Mumford, Enriques' classification of surfaces in char $ p$. II, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 23-42. MR 0491719
  • [BM77] E. Bombieri and D. Mumford, Enriques' classification of surfaces in char $ p$. III, Invent. Math. 35 (1976), 197-232. MR 0491720
  • [CCML98] Fabrizio Catanese, Ciro Ciliberto, and Margarida Mendes Lopes, On the classification of irregular surfaces of general type with nonbirational bicanonical map, Trans. Amer. Math. Soc. 350 (1998), no. 1, 275-308. MR 1422597, https://doi.org/10.1090/S0002-9947-98-01948-5
  • [Deb82] O. Debarre, Inégalités numériques pour les surfaces de type général, Bull. Soc. Math. France 110 (1982), no. 3, 319-346 (French, with English summary). MR 688038
  • [DI87] Pierre Deligne and Luc Illusie, Relèvements modulo $ p^2$ et décomposition du complexe de de Rham, Invent. Math. 89 (1987), no. 2, 247-270 (French). MR 894379, https://doi.org/10.1007/BF01389078
  • [Eis95] David Eisenbud, Commutative algebra: With a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. MR 1322960
  • [Elk81] Renée Elkik, Rationalité des singularités canoniques, Invent. Math. 64 (1981), no. 1, 1-6 (French). MR 621766, https://doi.org/10.1007/BF01393930
  • [Enr14] F. Enriques, Sulla classificazione delle superficie algebriche e particolarmente sulle superfichie di genere $ p^1=1$, Atti. Acc. Lincei V Ser. 23 (1914).
  • [Enr49] Federigo Enriques, Le Superficie Algebriche, Nicola Zanichelli, Bologna, 1949 (Italian). MR 0031770
  • [EV92] Hélène Esnault and Eckart Viehweg, Lectures on vanishing theorems, DMV Seminar, vol. 20, Birkhäuser Verlag, Basel, 1992. MR 1193913
  • [GL87] Mark Green and Robert Lazarsfeld, Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville, Invent. Math. 90 (1987), no. 2, 389-407. MR 910207, https://doi.org/10.1007/BF01388711
  • [GR71] Michel Raynaud and Laurent Gruson, Critères de platitude et de projectivité. Techniques de ``platification'' d'un module, Invent. Math. 13 (1971), 1-89 (French). MR 0308104
  • [Hac04] Christopher D. Hacon, A derived category approach to generic vanishing, J. Reine Angew. Math. 575 (2004), 173-187. MR 2097552, https://doi.org/10.1515/crll.2004.078
  • [Har66] Robin Hartshorne, Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. MR 0222093
  • [Har77] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
  • [HK12] C. D. Hacon and S. J. Kovács, Generic vanishing fails for singular varieties and in characteristic $ p>0$, Recent advances in algebraic geometry, London Math. Soc. Lecture Note Ser., vol. 417, Cambridge Univ. Press, Cambridge, 2015, pp. 240-253. MR 3380452
  • [HP02] Christopher D. Hacon and Rita Pardini, Surfaces with $ p_g=q=3$, Trans. Amer. Math. Soc. 354 (2002), no. 7, 2631-2638. MR 1895196, https://doi.org/10.1090/S0002-9947-02-02891-X
  • [HP13] Christopher D. Hacon and Zsolt Patakfalvi, Generic vanishing in characteristic $ p>0$ and the characterization of ordinary abelian varieties, Amer. J. Math. 138 (2016), no. 4, 963-998. MR 3538148, https://doi.org/10.1353/ajm.2016.0031
  • [Huy06] D. Huybrechts, Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006. MR 2244106
  • [Igu55] Jun-ichi Igusa, A fundamental inequality in the theory of Picard varieties, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 317-320. MR 0071113
  • [Jan08] J. Jang, Generic ordinarity for Semi-Stable Fibrations, arXiv: 0805.3982v1, 2008.
  • [KK] J. Kollár and S. Kovács, Birational geometry of log surfaces, preprint.
  • [KM98] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. MR 1658959
  • [Kod64] K. Kodaira, On the structure of compact complex analytic surfaces. I, Amer. J. Math. 86 (1964), 751-798. MR 0187255
  • [Kod66] K. Kodaira, On the structure of compact complex analytic surfaces. II, Amer. J. Math. 88 (1966), 682-721. MR 0205280
  • [Kod68] K. Kodaira, On the structure of compact complex analytic surfaces. III, Amer. J. Math. 90 (1968), 55-83. MR 0228019
  • [Kol07] János Kollár, Lectures on resolution of singularities, Annals of Mathematics Studies, vol. 166, Princeton University Press, Princeton, NJ, 2007. MR 2289519
  • [Lan15] Adrian Langer, Bogomolov's inequality for Higgs sheaves in positive characteristic, Invent. Math. 199 (2015), no. 3, 889-920. MR 3314517, https://doi.org/10.1007/s00222-014-0534-z
  • [Laz04] Robert Lazarsfeld, Positivity in algebraic geometry. I: Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. MR 2095471
  • [Lie13] Christian Liedtke, Algebraic surfaces in positive characteristic, Birational geometry, rational curves, and arithmetic, Springer, New York, 2013, pp. 229-292. MR 3114931, https://doi.org/10.1007/978-1-4614-6482-2_11
  • [MS87] V. B. Mehta and V. Srinivas, Varieties in positive characteristic with trivial tangent bundle, Compositio Math. 64 (1987), no. 2, 191-212. MR 916481
  • [Muk81] Shigeru Mukai, Duality between $ D(X)$ and $ D(\hat X)$ with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153-175. MR 607081
  • [Mum69] David Mumford, Enriques' classification of surfaces in $ {\rm char}\ p$. I, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 325-339. MR 0254053
  • [Mum12] D. Mumford, Abelian Variety, American Mathematical Society, 2012. MR2514037
  • [MvdG] B. Moonen and van der Geer.
    Abelian Variety.
  • [Pir02] Gian Pietro Pirola, Surfaces with $ p_g=q=3$, Manuscripta Math. 108 (2002), no. 2, 163-170. MR 1918584, https://doi.org/10.1007/s002290200253
  • [PP03] Giuseppe Pareschi and Mihnea Popa, Regularity on abelian varieties. I, J. Amer. Math. Soc. 16 (2003), no. 2, 285-302 (electronic). MR 1949161, https://doi.org/10.1090/S0894-0347-02-00414-9
  • [PP11] Giuseppe Pareschi and Mihnea Popa, GV-sheaves, Fourier-Mukai transform, and generic vanishing, Amer. J. Math. 133 (2011), no. 1, 235-271. MR 2752940, https://doi.org/10.1353/ajm.2011.0000
  • [PR04] Richard Pink and Damian Roessler, A conjecture of Beauville and Catanese revisited, Math. Ann. 330 (2004), no. 2, 293-308. MR 2089427, https://doi.org/10.1007/s00208-004-0549-7
  • [Zuc03] Francesco Zucconi, Surfaces with $ p_g=q=2$ and an irrational pencil, Canad. J. Math. 55 (2003), no. 3, 649-672. MR 1980618, https://doi.org/10.4153/CJM-2003-027-8

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 14F17, 14J29, 14K30

Retrieve articles in all journals with MSC (2010): 14F17, 14J29, 14K30


Additional Information

Yuan Wang
Affiliation: Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, Utah 84112-0090
Email: ywang@math.utah.edu

DOI: https://doi.org/10.1090/tran/6914
Keywords: Generic vanishing, surface of general type, Albanese morphism, Fourier-Mukai transform, positive characteristic
Received by editor(s): May 27, 2015
Received by editor(s) in revised form: January 16, 2016, and January 27, 2016
Published electronically: June 27, 2017
Additional Notes: The author was supported in part by the FRG grant DMS #1265261.
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society