Kohnen's formula and a conjecture of Darmon and Tornaría
Authors:
Matteo Longo and Zhengyu Mao
Journal:
Trans. Amer. Math. Soc. 370 (2018), 73-98
MSC (2010):
Primary 11F37, 11F67, 11G40; Secondary 11F85, 14G05
DOI:
https://doi.org/10.1090/tran/6930
Published electronically:
May 16, 2017
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We generalize a result of W. Kohnen (1985) to explicit Waldspurger lifts constructed by E. M. Baruch and Z. Mao (2007). As an application, we prove a conjecture formulated by H. Darmon and G. Tornaría (2008).
- [1]
Ehud Moshe Baruch and Zhengyu Mao, Central value of automorphic
-functions, Geom. Funct. Anal. 17 (2007), no. 2, 333-384. MR 2322488, https://doi.org/10.1007/s00039-007-0601-3
- [2] Massimo Bertolini and Henri Darmon, Hida families and rational points on elliptic curves, Invent. Math. 168 (2007), no. 2, 371-431. MR 2289868, https://doi.org/10.1007/s00222-007-0035-4
- [3] Massimo Bertolini and Henri Darmon, The rationality of Stark-Heegner points over genus fields of real quadratic fields, Ann. of Math. (2) 170 (2009), no. 1, 343-370. MR 2521118, https://doi.org/10.4007/annals.2009.170.343
- [4]
Massimo Bertolini, Henri Darmon, and Samit Dasgupta, Stark-Heegner points and special values of
-series,
-functions and Galois representations, London Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 1-23. MR 2392351, https://doi.org/10.1017/CBO9780511721267.002
- [5]
Daniel Bump, Solomon Friedberg, and Jeffrey Hoffstein, Nonvanishing theorems for
-functions of modular forms and their derivatives, Invent. Math. 102 (1990), no. 3, 543-618. MR 1074487, https://doi.org/10.1007/BF01233440
- [6]
Henri Darmon, Integration on
and arithmetic applications, Ann. of Math. (2) 154 (2001), no. 3, 589-639. MR 1884617, https://doi.org/10.2307/3062142
- [7] Henri Darmon and Gonzalo Tornaría, Stark-Heegner points and the Shimura correspondence, Compos. Math. 144 (2008), no. 5, 1155-1175. MR 2457522, https://doi.org/10.1112/S0010437X08003552
- [8] Roger Godement, Notes on jacquet langlands' theory, Institute for Advanced Study, 1970.
- [9]
Matthew Greenberg, Marco Adamo Seveso, and Shahab Shahabi, Modular
-adic
-functions attached to real quadratic fields and arithmetic applications, J. Reine Angew. Math. 721 (2016), 167-231. MR 3574881, https://doi.org/10.1515/crelle-2014-0088
- [10] Matthew Greenberg, Stark-Heegner points and the cohomology of quaternionic Shimura varieties, Duke Math. J. 147 (2009), no. 3, 541-575. MR 2510743, https://doi.org/10.1215/00127094-2009-017
- [11]
Ralph Greenberg and Glenn Stevens,
-adic
-functions and
-adic periods of modular forms, Invent. Math. 111 (1993), no. 2, 407-447. MR 1198816, https://doi.org/10.1007/BF01231294
- [12] Guhanvenkat Harikumar, Darmon cycles and kohnen-shintani lifting, 2015, Thesis (Ph.D.)-University of Bordeaux and University of Padova.
- [13] Winfried Kohnen, Fourier coefficients of modular forms of half-integral weight, Math. Ann. 271 (1985), no. 2, 237-268. MR 783554, https://doi.org/10.1007/BF01455989
- [14]
Matteo Longo and Marc-Hubert Nicole, The
-adic Shimura-Shintani-Waldspurger correspondence, Doc. Math. 18 (2013), 1-21. MR 3035767
- [15] Matteo Longo and Marc-Hubert Nicole, The Saito-Kurokawa lifting and Darmon points, Math. Ann. 356 (2013), no. 2, 469-486. MR 3048604, https://doi.org/10.1007/s00208-012-0846-5
- [16] Matteo Longo, Victor Rotger, and Stefano Vigni, On rigid analytic uniformizations of Jacobians of Shimura curves, Amer. J. Math. 134 (2012), no. 5, 1197-1246. MR 2975234, https://doi.org/10.1353/ajm.2012.0033
- [17]
Matteo Longo, Victor Rotger, and Stefano Vigni, Special values of
-functions and the arithmetic of Darmon points, J. Reine Angew. Math. 684 (2013), 199-244. MR 3181561
- [18] Matteo Longo and Stefano Vigni, The rationality of quaternionic Darmon points over genus fields of real quadratic fields, Int. Math. Res. Not. IMRN 13 (2014), 3632-3691. MR 3229764
- [19] Zhengyu Mao, On a generalization of Gross's formula, Math. Z. 271 (2012), no. 1-2, 593-609. MR 2917160, https://doi.org/10.1007/s00209-011-0879-6
- [20]
Ken Ono and Christopher Skinner, Fourier coefficients of half-integral weight modular forms modulo
, Ann. of Math. (2) 147 (1998), no. 2, 453-470. MR 1626761, https://doi.org/10.2307/121015
- [21]
Ken Ono and Christopher Skinner, Non-vanishing of quadratic twists of modular
-functions, Invent. Math. 134 (1998), no. 3, 651-660. MR 1660945, https://doi.org/10.1007/s002220050275
- [22]
Jeehoon Park,
-adic family of half-integral weight modular forms via overconvergent Shintani lifting, Manuscripta Math. 131 (2010), no. 3-4, 355-384. MR 2592085, https://doi.org/10.1007/s00229-009-0323-y
- [23]
Alexandru A. Popa, Central values of Rankin
-series over real quadratic fields, Compos. Math. 142 (2006), no. 4, 811-866. MR 2249532, https://doi.org/10.1112/S0010437X06002259
- [24] Kartik Prasanna, Arithmetic properties of the Shimura-Shintani-Waldspurger correspondence, Invent. Math. 176 (2009), no. 3, 521-600. With an appendix by Brian Conrad. MR 2501296, https://doi.org/10.1007/s00222-008-0169-z
- [25] Kartik Prasanna, On the Fourier coefficients of modular forms of half-integral weight, Forum Math. 22 (2010), no. 1, 153-177. MR 2604368, https://doi.org/10.1515/FORUM.2010.008
- [26]
Victor Rotger and Marco Adamo Seveso,
-invariants and Darmon cycles attached to modular forms, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 6, 1955-1999. MR 2984593, https://doi.org/10.4171/JEMS/352
- [27] Marco Adamo Seveso, Congruences and rationality of Stark-Heegner points, J. Number Theory 132 (2012), no. 3, 414-447. MR 2875348, https://doi.org/10.1016/j.jnt.2011.10.001
- [28]
Marco Adamo Seveso,
-adic
-functions and the rationality of Darmon cycles, Canad. J. Math. 64 (2012), no. 5, 1122-1181. MR 2979580, https://doi.org/10.4153/CJM-2011-076-8
- [29]
Marco Adamo Seveso, Heegner cycles and derivatives of
-adic
-functions, J. Reine Angew. Math. 686 (2014), 111-148. MR 3176601, https://doi.org/10.1515/crelle-2012-0027
- [30] Shahab Shahabi, p-adic deformation of Shintani cycles, ProQuest LLC, Ann Arbor, MI, 2008. Thesis (Ph.D.)-McGill University (Canada). MR 2713606
- [31] Takuro Shintani, On construction of holomorphic cusp forms of half integral weight, Nagoya Math. J. 58 (1975), 83-126. MR 0389772
- [32]
Glenn Stevens,
-adic modular forms of half-integral weight and a
-adic Shintani lifting, Arithmetic geometry (Tempe, AZ, 1993) Contemp. Math., vol. 174, Amer. Math. Soc., Providence, RI, 1994, pp. 129-151. MR 1299739, https://doi.org/10.1090/conm/174/01856
- [33] J.-L. Waldspurger, Correspondance de Shimura, J. Math. Pures Appl. (9) 59 (1980), no. 1, 1-132 (French). MR 577010
- [34] J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. (9) 60 (1981), no. 4, 375-484 (French). MR 646366
- [35]
J.-L. Waldspurger, Sur les valeurs de certaines fonctions
automorphes en leur centre de symétrie, Compositio Math. 54 (1985), no. 2, 173-242 (French). MR 783511
- [36] Jean-Loup Waldspurger, Correspondances de Shimura et quaternions, Forum Math. 3 (1991), no. 3, 219-307 (French). MR 1103429, https://doi.org/10.1515/form.1991.3.219
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11F37, 11F67, 11G40, 11F85, 14G05
Retrieve articles in all journals with MSC (2010): 11F37, 11F67, 11G40, 11F85, 14G05
Additional Information
Matteo Longo
Affiliation:
Dipartimento di Matematica, Università di Padova, Via Trieste 63, 35121 Padova, Italy
Email:
mlongo@math.unipd.it
Zhengyu Mao
Affiliation:
Department of Mathematics and Computer Science, Rutgers University, Newark, New Jersey 07102
Email:
zmao@rutgers.edu
DOI:
https://doi.org/10.1090/tran/6930
Received by editor(s):
November 25, 2014
Received by editor(s) in revised form:
February 14, 2016, and February 29, 2016
Published electronically:
May 16, 2017
Additional Notes:
The first author was partly supported by PRIN 2010-11, Cariparo Foundation Project Differential Methods in Arithmetic, Geometry and Algebra, PRAT 2013 and INDAM. The second author was partly supported by NSF DMS 1400063.
Article copyright:
© Copyright 2017
American Mathematical Society