Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Strongly self-absorbing $ \mathrm{C}^*$-dynamical systems


Author: Gábor Szabó
Journal: Trans. Amer. Math. Soc. 370 (2018), 99-130
MSC (2010): Primary 46L55
DOI: https://doi.org/10.1090/tran/6931
Published electronically: July 13, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce and study strongly self-absorbing actions of locally compact groups on $ \mathrm {C}^*$-algebras. This is an equivariant generalization of a strongly self-absorbing $ \mathrm {C}^*$-algebra to the setting of $ \mathrm {C}^*$-dynamical systems. The main result is the following equivariant McDuff-type absorption theorem: A cocycle action $ (\alpha ,u): G\curvearrowright A$ on a separable $ \mathrm {C}^*$-algebra is cocycle conjugate to its tensorial stabilization with a strongly self-absorbing action $ \gamma : G\curvearrowright \mathcal {D}$, if and only if there exists an equivariant and unital $ *$-homomorphism from $ \mathcal {D}$ into the central sequence algebra of $ A$. We also discuss some non-trivial examples of strongly self-absorbing actions.


References [Enhancements On Off] (What's this?)

  • [1] Selçuk Barlak and Gábor Szabó, Rokhlin actions of finite groups on UHF-absorbing $ \mathrm {C}^*$-algebras, Trans. Amer. Math. Soc. 369 (2017), no. 2, 833-859. MR 3572256, https://doi.org/10.1090/tran6697
  • [2] Selçuk Barlak, Gábor Szabó, and Christian Voigt, The spatial Rokhlin property for actions of compact quantum groups, J. Funct. Anal. 272 (2017), no. 6, 2308-2360. MR 3603300, https://doi.org/10.1016/j.jfa.2016.09.023
  • [3] Robert C. Busby and Harvey A. Smith, Representations of twisted group algebras, Trans. Amer. Math. Soc. 149 (1970), 503-537. MR 0264418
  • [4] Alain Connes, Outer conjugacy classes of automorphisms of factors, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 3, 383-419. MR 0394228
  • [5] A. Connes, Periodic automorphisms of the hyperfinite factor of type II$ _1$, Acta Sci. Math. (Szeged) 39 (1977), no. 1-2, 39-66. MR 0448101
  • [6] Joachim Cuntz, Simple $ C^*$-algebras generated by isometries, Comm. Math. Phys. 57 (1977), no. 2, 173-185. MR 0467330
  • [7] George A. Elliott and Andrew S. Toms, Regularity properties in the classification program for separable amenable $ C^*$-algebras, Bull. Amer. Math. Soc. (N.S.) 45 (2008), no. 2, 229-245. MR 2383304, https://doi.org/10.1090/S0273-0979-08-01199-3
  • [8] David E. Evans and Akitaka Kishimoto, Trace scaling automorphisms of certain stable AF algebras, Hokkaido Math. J. 26 (1997), no. 1, 211-224. MR 1432548, https://doi.org/10.14492/hokmj/1351257815
  • [9] David E. Evans, On $ O_{n}$, Publ. Res. Inst. Math. Sci. 16 (1980), no. 3, 915-927. MR 602475, https://doi.org/10.2977/prims/1195186936
  • [10] Eusebio Gardella and Martino Lupini, Equivariant logic and applications to $ \mathrm {C}^*$-dynamics, Preprint, 2016, arXiv:1608.05532
  • [11] Eusebio Gardella and Luis Santiago, Equivariant $ *$-homomorphisms, Rokhlin constraints and equivariant UHF-absorption, J. Funct. Anal. 270 (2016), no. 7, 2543-2590. MR 3464050, https://doi.org/10.1016/j.jfa.2016.02.010
  • [12] Pavle Goldstein and Masaki Izumi, Quasi-free actions of finite groups on the Cuntz algebra $ \mathcal {O}_\infty $, Tohoku Math. J. (2) 63 (2011), no. 4, 729-749. MR 2872963, https://doi.org/10.2748/tmj/1325886288
  • [13] Erik Guentner, Nigel Higson, and Jody Trout, Equivariant $ E$-theory for $ C^*$-algebras, Mem. Amer. Math. Soc. 148 (2000), no. 703, viii+86. MR 1711324, https://doi.org/10.1090/memo/0703
  • [14] Ilan Hirshberg and Wilhelm Winter, Rokhlin actions and self-absorbing $ C^*$-algebras, Pacific J. Math. 233 (2007), no. 1, 125-143. MR 2366371, https://doi.org/10.2140/pjm.2007.233.125
  • [15] Masaki Izumi, Finite group actions on $ C^*$-algebras with the Rohlin property. I, Duke Math. J. 122 (2004), no. 2, 233-280. MR 2053753, https://doi.org/10.1215/S0012-7094-04-12221-3
  • [16] Masaki Izumi, Finite group actions on $ C^*$-algebras with the Rohlin property. II, Adv. Math. 184 (2004), no. 1, 119-160. MR 2047851, https://doi.org/10.1016/S0001-8708(03)00140-3
  • [17] Masaki Izumi, Group actions on operator algebras, Proceedings of the International Congress of Mathematicians. Volume III, Hindustan Book Agency, New Delhi, 2010, pp. 1528-1548. MR 2827854
  • [18] Masaki Izumi, Poly- $ \mathbb{Z}$ group actions on Kirchberg algebras, Oberwolfach Rep. 9 (2012), pp. 3170-3173.
  • [19] Masaki Izumi and Hiroki Matui, $ \mathbb{Z}^2$-actions on Kirchberg algebras, Adv. Math. 224 (2010), no. 2, 355-400. MR 2609009, https://doi.org/10.1016/j.aim.2009.11.014
  • [20] Xinhui Jiang, Nonstable $ K$-theory for $ \mathcal {Z}$-stable $ \mathrm {C}^*$-algebras (1997). URL http://arxiv.org/abs/ math/9707228v1.
  • [21] Vaughan F. R. Jones, Actions of finite groups on the hyperfinite type $ {\rm II}_{1}$factor, Mem. Amer. Math. Soc. 28 (1980), no. 237, v+70. MR 587749, https://doi.org/10.1090/memo/0237
  • [22] Yoshikazu Katayama, Colin E. Sutherland, and Masamichi Takesaki, The characteristic square of a factor and the cocycle conjugacy of discrete group actions on factors, Invent. Math. 132 (1998), no. 2, 331-380. MR 1621416, https://doi.org/10.1007/s002220050226
  • [23] Takeshi Katsura and Hiroki Matui, Classification of uniformly outer actions of $ \mathbb{Z}^2$ on UHF algebras, Adv. Math. 218 (2008), no. 3, 940-968. MR 2414327, https://doi.org/10.1016/j.aim.2008.01.014
  • [24] Y. Kawahigashi, C. E. Sutherland, and M. Takesaki, The structure of the automorphism group of an injective factor and the cocycle conjugacy of discrete abelian group actions, Acta Math. 169 (1992), no. 1-2, 105-130. MR 1179014, https://doi.org/10.1007/BF02392758
  • [25] Eberhard Kirchberg, The classification of purely infinite $ \mathrm {C}^*$-algebras using Kasparov's theory, preprint, 2003.
  • [26] Eberhard Kirchberg, Central sequences in $ C^*$-algebras and strongly purely infinite algebras, Operator Algebras: The Abel Symposium 2004, Abel Symp., vol. 1, Springer, Berlin, 2006, pp. 175-231. MR 2265050, https://doi.org/10.1007/978-3-540-34197-0_10
  • [27] Eberhard Kirchberg and N. Christopher Phillips, Embedding of exact $ C^*$-algebras in the Cuntz algebra $ \mathcal {O}_2$, J. Reine Angew. Math. 525 (2000), 17-53. MR 1780426, https://doi.org/10.1515/crll.2000.065
  • [28] Akitaka Kishimoto, The Rohlin property for automorphisms of UHF algebras, J. Reine Angew. Math. 465 (1995), 183-196. MR 1344136, https://doi.org/10.1515/crll.1995.465.183
  • [29] A. Kishimoto, A Rohlin property for one-parameter automorphism groups, Comm. Math. Phys. 179 (1996), no. 3, 599-622. MR 1400754
  • [30] Akitaka Kishimoto, The Rohlin property for shifts on UHF algebras and automorphisms of Cuntz algebras, J. Funct. Anal. 140 (1996), no. 1, 100-123. MR 1404576, https://doi.org/10.1006/jfan.1996.0100
  • [31] Akitaka Kishimoto, Automorphisms of $ {\rm A}\mathbf {T}$ algebras with the Rohlin property, J. Operator Theory 40 (1998), no. 2, 277-294. MR 1660386
  • [32] A. Kishimoto, Unbounded derivations in $ AT$ algebras, J. Funct. Anal. 160 (1998), no. 1, 270-311. MR 1658684, https://doi.org/10.1006/jfan.1998.3333
  • [33] Akitaka Kishimoto, Rohlin flows on the Cuntz algebra $ \mathcal {O}_2$, Internat. J. Math. 13 (2002), no. 10, 1065-1094. MR 1945707, https://doi.org/10.1142/S0129167X02001563
  • [34] Huaxin Lin, Kishimoto's conjugacy theorems in simple $ C^*$-algebras of tracial rank one, Integral Equations Operator Theory 83 (2015), no. 1, 95-150. MR 3396409, https://doi.org/10.1007/s00020-014-2187-0
  • [35] Toshihiko Masuda, Evans-Kishimoto type argument for actions of discrete amenable groups on McDuff factors, Math. Scand. 101 (2007), no. 1, 48-64. MR 2353241, https://doi.org/10.7146/math.scand.a-15031
  • [36] Hiroki Matui, Classification of outer actions of $ \mathbb{Z}^N$ on $ \mathcal {O}_2$, Adv. Math. 217 (2008), no. 6, 2872-2896. MR 2397470, https://doi.org/10.1016/j.aim.2007.11.023
  • [37] Hiroki Matui, $ \mathbb{Z}$-actions on AH algebras and $ \mathbb{Z}^2$-actions on AF algebras, Comm. Math. Phys. 297 (2010), no. 2, 529-551. MR 2651909, https://doi.org/10.1007/s00220-009-0969-z
  • [38] Hiroki Matui, $ \mathbb{Z}^N$-actions on UHF algebras of infinite type, J. Reine Angew. Math. 657 (2011), 225-244. MR 2824789, https://doi.org/10.1515/CRELLE.2011.065
  • [39] Hiroki Matui and Yasuhiko Sato, $ \mathcal {Z}$-stability of crossed products by strongly outer actions, Comm. Math. Phys. 314 (2012), no. 1, 193-228. MR 2954514, https://doi.org/10.1007/s00220-011-1392-9
  • [40] Hiroki Matui and Yasuhiko Sato, $ \mathcal {Z}$-stability of crossed products by strongly outer actions II, Amer. J. Math. 136 (2014), no. 6, 1441-1496. MR 3282978, https://doi.org/10.1353/ajm.2014.0043
  • [41] Dusa McDuff, Central sequences and the hyperfinite factor, Proc. London Math. Soc. (3) 21 (1970), 443-461. MR 0281018
  • [42] Hideki Nakamura, The Rohlin property for $ Z^2$-actions on UHF algebras, J. Math. Soc. Japan 51 (1999), no. 3, 583-612. MR 1691489, https://doi.org/10.2969/jmsj/05130583
  • [43] Hideki Nakamura, Aperiodic automorphisms of nuclear purely infinite simple $ C^*$-algebras, Ergodic Theory Dynam. Systems 20 (2000), no. 6, 1749-1765. MR 1804956, https://doi.org/10.1017/S0143385700000973
  • [44] Adrian Ocneanu, Actions of discrete amenable groups on von Neumann algebras, Lecture Notes in Mathematics, vol. 1138, Springer-Verlag, Berlin, 1985. MR 807949
  • [45] Judith A. Packer and Iain Raeburn, Twisted crossed products of $ C^*$-algebras, Math. Proc. Cambridge Philos. Soc. 106 (1989), no. 2, 293-311. MR 1002543, https://doi.org/10.1017/S0305004100078129
  • [46] N. Christopher Phillips, A classification theorem for nuclear purely infinite simple $ C^*$-algebras, Doc. Math. 5 (2000), 49-114 (electronic). MR 1745197
  • [47] M. Rørdam and E. Størmer, Classification of nuclear $ C^*$-algebras. Entropy in operator algebras, Encyclopaedia of Mathematical Sciences, vol. 126, Springer-Verlag, Berlin, 2002. MR 1878881
  • [48] Colin E. Sutherland and Masamichi Takesaki, Actions of discrete amenable groups on injective factors of type $ {\rm III}_\lambda ,\;\lambda \neq 1$, Pacific J. Math. 137 (1989), no. 2, 405-444. MR 990219
  • [49] Gábor Szabó, Equivariant Kirchberg-Phillips-type absorption for amenable group actions, preprint, 2016, arXiv:1610:05939.
  • [50] Andrew S. Toms and Wilhelm Winter, Strongly self-absorbing $ C^*$-algebras, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3999-4029. MR 2302521, https://doi.org/10.1090/S0002-9947-07-04173-6
  • [51] Wilhelm Winter, Decomposition rank and $ \mathcal {Z}$-stability, Invent. Math. 179 (2010), no. 2, 229-301. MR 2570118, https://doi.org/10.1007/s00222-009-0216-4
  • [52] Wilhelm Winter, Strongly self-absorbing $ C^*$-algebras are $ \mathcal {Z}$-stable, J. Noncommut. Geom. 5 (2011), no. 2, 253-264. MR 2784504, https://doi.org/10.4171/JNCG/74
  • [53] Wilhelm Winter, Localizing the Elliott conjecture at strongly self-absorbing $ C^*$-algebras, J. Reine Angew. Math. 692 (2014), 193-231. MR 3274552
  • [54] Wilhelm Winter and Joachim Zacharias, The nuclear dimension of $ C^\ast $-algebras, Adv. Math. 224 (2010), no. 2, 461-498. MR 2609012, https://doi.org/10.1016/j.aim.2009.12.005

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46L55

Retrieve articles in all journals with MSC (2010): 46L55


Additional Information

Gábor Szabó
Affiliation: Fachbereich Mathematik, Westfälische Wilhelms-Universität, Einsteinstrasse 62, 48149 Münster, Germany
Address at time of publication: Institute of Mathematics, Fraser Noble Building, University of Aberdeen, Aberdeen AB24 3UE, Scotland, United Kingdom
Email: gabor.szabo@abdn.ac.uk

DOI: https://doi.org/10.1090/tran/6931
Received by editor(s): September 29, 2015
Received by editor(s) in revised form: March 8, 2016
Published electronically: July 13, 2017
Additional Notes: The author was supported by SFB 878 Groups, Geometry and Actions
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society