Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Rational quintics in the real plane


Authors: Ilia Itenberg, Grigory Mikhalkin and Johannes Rau
Journal: Trans. Amer. Math. Soc. 370 (2018), 131-196
MSC (2010): Primary 14P25, 14T05
DOI: https://doi.org/10.1090/tran/6938
Published electronically: June 21, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: From a topological viewpoint, a rational curve in the real projective plane is generically a smoothly immersed circle and a finite collection of isolated points. We give an isotopy classification of generic rational quintics in $ \mathbb{RP}^2$ in the spirit of Hilbert's 16th problem.


References [Enhancements On Off] (What's this?)

  • [1] V. I. Arnold, Plane curves, their invariants, perestroikas and classifications, Singularities and bifurcations, Adv. Soviet Math., vol. 21, Amer. Math. Soc., Providence, RI, 1994, pp. 33-91. MR 1310595
  • [2] Erwan Brugallé, Ilia Itenberg, Grigory Mikhalkin, and Kristin Shaw, Brief introduction to tropical geometry, Proceedings of the Gökova Geometry-Topology Conference 2014, Gökova Geometry/Topology Conference (GGT), Gökova, 2015, pp. 1-75. MR 3381439
  • [3] L. Brusotti, Sulla ``piccola variazione'' di una curva piana algebrica reale, Rom. Acc. L. Rend. (5) 30 (1921), no. 1, 375-379 (Italian).
  • [4] S. D'Mello, Rigid isotopy classification of real degree-4 planar rational curves with only real nodes (An elementary approach), arXiv 1307.7456 (2013).
  • [5] T. Fiedler, Pencils of lines and the topology of real algebraic curves, Math. USSR Izv. 21 (1983), 161-170 (English). MR 0670168
  • [6] B. Haas, Real algebraic curves and combinatorial constructions. Thèse doctorale, Université de Strasbourg, 1997.
  • [7] A. Harnack, Ueber die Vieltheiligkeit der ebenen algebraischen Curven, Math. Ann. 10 (1876), 189-199 (German).
  • [8] D. Hilbert, Mathematische Probleme, Vortrag, gehalten auf dem internationalen Mathematiker-Congress zu Paris 1900, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. (1900), 253-297 (German).
  • [9] Viatcheslav Kharlamov and Frank Sottile, Maximally inflected real rational curves, Mosc. Math. J. 3 (2003), no. 3, 947-987, 1199-1200 (English, with English and Russian summaries). MR 2078569
  • [10] V.M. Kharlamo, Rigid isotopy classification of real plane curves of degree 5, Funct. Anal. Appl. 15 (1981), 73-74 (English).
  • [11] Alexis Marin, Quelques remarques sur les courbes algébriques planes réelles, Seminar on Real Algebraic Geometry (Paris, 1977/1978 and Paris, 1978/1979), Publ. Math. Univ. Paris VII, vol. 9, Univ. Paris VII, Paris, 1980, pp. 51-68 (French). MR 700836
  • [12] G. Mikhalkin, Real algebraic curves, the moment map and amoebas, Ann. of Math. (2) 151 (2000), no. 1, 309-326. MR 1745011, https://doi.org/10.2307/121119
  • [13] Grigory Mikhalkin, Enumerative tropical algebraic geometry in $ \mathbb{R}^2$, J. Amer. Math. Soc. 18 (2005), no. 2, 313-377. MR 2137980, https://doi.org/10.1090/S0894-0347-05-00477-7
  • [14] I. Petrowsky, On the topology of real plane algebraic curves, Ann. of Math. (2) 39 (1938), no. 1, 189-209. MR 1503398, https://doi.org/10.2307/1968723
  • [15] V. A. Rohlin, Complex topological characteristics of real algebraic curves, Uspekhi Mat. Nauk 33 (1978), no. 5(203), 77-89, 237 (Russian). MR 511882
  • [16] A. Shumakovich, Explicit formulas for the strangeness of plane curves, St. Petersburg Math. J. 7 (1996), no. 3, 445-472. MR 1353494
  • [17] Eugenii Shustin, Gluing of singular and critical points, Topology 37 (1998), no. 1, 195-217. MR 1480886, https://doi.org/10.1016/S0040-9383(97)00008-6
  • [18] David E. Speyer, Horn's problem, Vinnikov curves, and the hive cone, Duke Math. J. 127 (2005), no. 3, 395-427. MR 2132865, https://doi.org/10.1215/S0012-7094-04-12731-0
  • [19] O. Ya. Viro, Curves of degree 7, curves of degree 8 and Ragsdale's conjecture, Sov. Math. Dokl. 22 (1980), 566-570. MR 0592496
  • [20] O. Ya. Viro, Progress in the topology of real algebraic varieties over the last six years, Russ. Math. Surv. 41 (1986), no. 3, 55-82 (English).
  • [21] O. Ya. Viro, Some integral calculus based on Euler characteristic, Topology and geometry--Rohlin Seminar, Lecture Notes in Math., vol. 1346, Springer, Berlin, 1988, pp. 127-138. MR 970076, https://doi.org/10.1007/BFb0082775
  • [22] O. Ya. Viro, Real plane algebraic curves: constructions with controlled topology, Algebra i Analiz 1 (1989), no. 5, 1-73 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 5, 1059-1134. MR 1036837
  • [23] Oleg Viro, Generic immersions of the circle to surfaces and the complex topology of real algebraic curves, Topology of real algebraic varieties and related topics, Amer. Math. Soc. Transl. Ser. 2, vol. 173, Amer. Math. Soc., Providence, RI, 1996, pp. 231-252. MR 1384321, https://doi.org/10.1090/trans2/173/19
  • [24] Hassler Whitney, On regular closed curves in the plane, Compositio Math. 4 (1937), 276-284. MR 1556973
  • [25] George Wilson, Hilbert's sixteenth problem, Topology 17 (1978), no. 1, 53-73. MR 0498591

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 14P25, 14T05

Retrieve articles in all journals with MSC (2010): 14P25, 14T05


Additional Information

Ilia Itenberg
Affiliation: Université Pierre et Marie Curie, Institut de Mathématiques de Jussieu - Paris Rive Gauche, 4 place Jussieu, 75252 Paris Cedex 5, France — and — Département de Mathématiques et Applications, École Normale Supérieure, 45 rue d’Ulm, 75230 Paris Cedex 5, France
Email: ilia.itenberg@imj-prg.fr

Grigory Mikhalkin
Affiliation: Section de Mathématiques, Université de Genève, Battelle Villa, 1227 Carouge, Suisse
Email: grigory.mikhalkin@unige.ch

Johannes Rau
Affiliation: Fachrichtung Mathematik, Universität der Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany
Address at time of publication: Fachbereich Mathematik, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
Email: johannes.rau@math.uni-tuebingen.de

DOI: https://doi.org/10.1090/tran/6938
Received by editor(s): October 9, 2015
Received by editor(s) in revised form: March 9, 2016
Published electronically: June 21, 2017
Additional Notes: Part of the research was conducted during the stay of all three authors at the Max-Planck-Institut für Mathematik in Bonn. Research was supported in part by the FRG Collaborative Research grant DMS-1265228 of the U.S. National Science Foundation (first author), the grants 141329, 159240 and the NCCR SwissMAP project of the Swiss National Science Foundation (second author)
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society