Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Most secant varieties of tangential varieties to Veronese varieties are nondefective


Authors: Hirotachi Abo and Nick Vannieuwenhoven
Journal: Trans. Amer. Math. Soc. 370 (2018), 393-420
MSC (2010): Primary 14M99, 14Q15, 14Q20, 15A69, 15A72
DOI: https://doi.org/10.1090/tran/6955
Published electronically: August 3, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a conjecture stated by Catalisano, Geramita, and
Gimigliano in 2002, which claims that the secant varieties of tangential varieties to the $ d$th Veronese embedding of the projective $ n$-space $ \mathbb{P}^n$ have the expected dimension, modulo a few well-known exceptions. It is arguably the first complete result on the dimensions of secant varieties of a classically studied variety since the work of Alexander and Hirschowitz in 1995. As Bernardi, Catalisano, Gimigliano, and Idá demonstrated that the proof of this conjecture may be reduced to the case of cubics, i.e., $ d=3$, the main contribution of this work is the resolution of this base case. The proposed proof proceeds by induction on the dimension $ n$ of the projective space via a specialization argument. This reduces the proof to a large number of initial cases for the induction, which were settled using a computer-assisted proof. The individual base cases were computationally challenging problems. Indeed, the largest base case required us to deal with the tangential variety to the third Veronese embedding of $ \mathbb{P}^{79}$ in $ \mathbb{P}^{88559}$.


References [Enhancements On Off] (What's this?)

  • [1] Hirotachi Abo, On non-defectivity of certain Segre-Veronese varieties, J. Symbolic Comput. 45 (2010), no. 12, 1254-1269. MR 2733377, https://doi.org/10.1016/j.jsc.2010.06.008
  • [2] Hirotachi Abo, Varieties of completely decomposable forms and their secants, J. Algebra 403 (2014), 135-153. MR 3166068, https://doi.org/10.1016/j.jalgebra.2013.12.027
  • [3] Hirotachi Abo and Maria Chiara Brambilla, Secant varieties of Segre-Veronese varieties $ \mathbb{P}^m\times \mathbb{P}^n$ embedded by $ \mathcal {O}(1,2)$, Experiment. Math. 18 (2009), no. 3, 369-384. MR 2555705
  • [4] Hirotachi Abo and Maria Chiara Brambilla, On the dimensions of secant varieties of Segre-Veronese varieties, Ann. Mat. Pura Appl. (4) 192 (2013), no. 1, 61-92. MR 3011324, https://doi.org/10.1007/s10231-011-0212-3
  • [5] Hirotachi Abo, Giorgio Ottaviani, and Chris Peterson, Induction for secant varieties of Segre varieties, Trans. Amer. Math. Soc. 361 (2009), no. 2, 767-792. MR 2452824, https://doi.org/10.1090/S0002-9947-08-04725-9
  • [6] J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables, J. Algebraic Geom. 4 (1995), no. 2, 201-222. MR 1311347
  • [7] Enrique Arrondo and Alessandra Bernardi, On the variety parameterizing completely decomposable polynomials, J. Pure Appl. Algebra 215 (2011), no. 3, 201-220. MR 2729216, https://doi.org/10.1016/j.jpaa.2010.04.008
  • [8] E. Ballico, On the secant varieties to the tangent developable of a Veronese variety, J. Algebra 288 (2005), no. 2, 279-286. MR 2146130, https://doi.org/10.1016/j.jalgebra.2005.03.031
  • [9] A. Bernardi, M. V. Catalisano, A. Gimigliano, and M. Idà, Secant varieties to osculating varieties of Veronese embeddings of $ \mathbb{P}^n$, J. Algebra 321 (2009), no. 3, 982-1004. MR 2488563, https://doi.org/10.1016/j.jalgebra.2008.10.020
  • [10] Maria Chiara Brambilla and Giorgio Ottaviani, On the Alexander-Hirschowitz theorem, J. Pure Appl. Algebra 212 (2008), no. 5, 1229-1251. MR 2387598, https://doi.org/10.1016/j.jpaa.2007.09.014
  • [11] Peter Bürgisser, Cook's versus Valiant's hypothesis, Theoret. Comput. Sci. 235 (2000), no. 1, 71-88. Selected papers in honor of Manuel Blum (Hong Kong, 1998). MR 1765966, https://doi.org/10.1016/S0304-3975(99)00183-8
  • [12] Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi, Algebraic complexity theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 315, Springer-Verlag, Berlin, 1997. MR 1440179
  • [13] M. V. Catalisano, L. Chiantini, A. V. Geramita, and A. Oneto, Waring-like decompositions of polynomials - $ 1$, preprint, arXiv:1511.07789.
  • [14] M. V. Catalisano, A. V. Geramita, and A. Gimigliano, On the secant varieties to the tangential varieties of a Veronesean, Proc. Amer. Math. Soc. 130 (2002), no. 4, 975-985. MR 1873770, https://doi.org/10.1090/S0002-9939-01-06251-7
  • [15] M. V. Catalisano, A. V. Geramita, and A. Gimigliano, Higher secant varieties of Segre-Veronese varieties, Projective varieties with unexpected properties, Walter de Gruyter, Berlin, 2005, pp. 81-107. MR 2202248
  • [16] Luca Chiantini, Giorgio Ottaviani, and Nick Vannieuwenhoven, An algorithm for generic and low-rank specific identifiability of complex tensors, SIAM J. Matrix Anal. Appl. 35 (2014), no. 4, 1265-1287. MR 3270978, https://doi.org/10.1137/140961389
  • [17] Luca Chiantini, Giorgio Ottaviani, and Nick Vannieuwenhoven, On generic identifiability of symmetric tensors of subgeneric rank, Trans. Amer. Math. Soc. 369 (2017), no. 6, 4021-4042. MR 3624400, https://doi.org/10.1090/tran/6762
  • [18] Timothy A. Davis, Direct methods for sparse linear systems, Fundamentals of Algorithms, vol. 2, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006. MR 2270673
  • [19] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct methods for sparse matrices, Monographs on Numerical Analysis, The Clarendon Press, Oxford University Press, New York, 1986. Oxford Science Publications. MR 892734
  • [20] Jean-Guillaume Dumas, Pascal Giorgi, and Clément Pernet, Dense linear algebra over word-size prime fields: the FFLAS and FFPACK packages, ACM Trans. Math. Software 35 (2008), no. 3, Art. 19, 35. MR 2738206, https://doi.org/10.1145/1391989.1391992
  • [21] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1264417
  • [22] G. Guennebaud, B. Jacob, et al., Eigen v3, http://eigen.tuxfamily.org, 2010.
  • [23] Antonio Laface and Elisa Postinghel, Secant varieties of Segre-Veronese embeddings of $ (\mathbb{P}^1)^r$, Math. Ann. 356 (2013), no. 4, 1455-1470. MR 3072808, https://doi.org/10.1007/s00208-012-0890-1
  • [24] J. M. Landsberg, Tensors: geometry and applications, Graduate Studies in Mathematics, vol. 128, American Mathematical Society, Providence, RI, 2012. MR 2865915
  • [25] J. M. Landsberg, Geometric complexity theory: an introduction for geometers, Ann. Univ. Ferrara Sez. VII Sci. Mat. 61 (2015), no. 1, 65-117. MR 3343444, https://doi.org/10.1007/s11565-014-0202-7
  • [26] W. Qian, Z. Xianyi, Z. Yunquan, and Q. Yi, AUGEM: Automatically generate high performance dense linear algebra kernels on x86 CPUs, Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (New York, NY), ACM, 2013, pp. 25:1-25:12.
  • [27] Yong Su Shin, Secants to the variety of completely reducible forms and the Hilbert function of the union of star-configurations, J. Algebra Appl. 11 (2012), no. 6, 1250109, 27. MR 2997451, https://doi.org/10.1142/S0219498812501095
  • [28] Amir Shpilka and Amir Yehudayoff, Arithmetic circuits: a survey of recent results and open questions, Found. Trends Theor. Comput. Sci. 5 (2009), no. 3-4, 207-388 (2010). MR 2756166, https://doi.org/10.1561/0400000039
  • [29] A. Terracini, Sulla $ V_k$ per cui la varietà degli $ S_h$ $ h+1$-secanti ha dimensione minore dell'ordinario, Rend. Circ. Mat. Palermo 31 (1911), 392-396.
  • [30] Douglas A. Torrance, Generic forms of low Chow rank, J. Algebra Appl. 16 (2017), no. 3, 1750047, 10. MR 3626714, https://doi.org/10.1142/S0219498817500475

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 14M99, 14Q15, 14Q20, 15A69, 15A72

Retrieve articles in all journals with MSC (2010): 14M99, 14Q15, 14Q20, 15A69, 15A72


Additional Information

Hirotachi Abo
Affiliation: Department of Mathematics, University of Idaho, Moscow, Idaho 83844-1103
Email: abo@uidaho.edu

Nick Vannieuwenhoven
Affiliation: Department of Computer Science, KU Leuven, B-3000 Leuven, Belgium
Email: nick.vannieuwenhoven@cs.kuleuven.be

DOI: https://doi.org/10.1090/tran/6955
Keywords: Chow--Veronese variety, Chow--Waring rank, tangential variety, nondefectivity of secant varieties
Received by editor(s): October 30, 2015
Received by editor(s) in revised form: March 30, 2016
Published electronically: August 3, 2017
Additional Notes: The first author was partly supported by NSF grant DMS-0901816
The second author’s research was partially supported by a Ph.D. Fellowship of the Research Foundation–Flanders (FWO) and partially by a Postdoctoral Fellowship of the Research Foundation–Flanders (FWO)
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society