Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Poincaré-Birkhoff Theorems in random dynamics


Authors: Álvaro Pelayo and Fraydoun Rezakhanlou
Journal: Trans. Amer. Math. Soc. 370 (2018), 601-639
MSC (2010): Primary 60D05
DOI: https://doi.org/10.1090/tran/6967
Published electronically: August 15, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We propose a generalization of the Poincaré-Birkhoff Theorem on area-preserving twist maps to area-preserving twist maps $ F$ that are random with respect to an ergodic probability measure. In this direction, we will prove several theorems concerning existence, density, and type of the fixed points. To this end first we introduce a randomized version of generalized generating functions, and verify the correspondence between its critical points and the fixed points of $ F$, a fact which we successively exploit in order to prove the theorems. The study we carry out needs to combine probabilistic techniques with methods from nonlinear PDE, and from differential geometry, notably Moser's method and Conley-Zehnder theory. Our stochastic model in the periodic case coincides with the classical setting of the Poincaré-Birkhoff Theorem.


References [Enhancements On Off] (What's this?)

  • [Ad00] Robert J. Adler and Jonathan E. Taylor, Random fields and geometry, Springer Monographs in Mathematics, Springer, New York, 2007. MR 2319516
  • [AFFHO12] Peter Albers, Joel W. Fish, Urs Frauenfelder, Helmut Hofer, and Otto van Koert, Global surfaces of section in the planar restricted 3-body problem, Arch. Ration. Mech. Anal. 204 (2012), no. 1, 273-284. MR 2898741, https://doi.org/10.1007/s00205-011-0475-2
  • [Ar78] V. I. Arnol'd, Mathematical methods of classical mechanics, Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York-Heidelberg, 1978. Translated from the Russian by K. Vogtmann and A. Weinstein. MR 0690288
  • [AA68] V. I. Arnol'd and A. Avez, Ergodic problems of classical mechanics, Translated from the French by A. Avez, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0232910
  • [Au13] Michèle Audin, Vladimir Igorevich Arnold and the invention of symplectic topology, Contact and symplectic topology, Bolyai Soc. Math. Stud., vol. 26, János Bolyai Math. Soc., Budapest, 2014, pp. 1-25. MR 3220939, https://doi.org/10.1007/978-3-319-02036-5_1
  • [Az09] Jean-Marc Azais and Mario Wschebor, Level sets and extrema of random processes and fields, John Wiley and Sons, Inc., Hoboken, NJ, 2009. MR 2478201
  • [BG97] June Barrow-Green, Poincaré and the three body problem, History of Mathematics, vol. 11, American Mathematical Society, Providence, RI; London Mathematical Society, London, 1997. MR 1415387
  • [Bi13] George D. Birkhoff, Proof of Poincaré's geometric theorem, Trans. Amer. Math. Soc. 14 (1913), no. 1, 14-22. MR 1500933, https://doi.org/10.2307/1988766
  • [Bi17] George D. Birkhoff, Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc. 18 (1917), no. 2, 199-300. MR 1501070, https://doi.org/10.2307/1988861
  • [Bi26] George D. Birkhoff, An extension of Poincaré's last geometric theorem, Acta Math. 47 (1926), no. 4, 297-311. MR 1555218, https://doi.org/10.1007/BF02559515
  • [Bi66] George D. Birkhoff, Dynamical systems, With an addendum by Jurgen Moser. American Mathematical Society Colloquium Publications, Vol. IX, American Mathematical Society, Providence, R.I., 1966. MR 0209095
  • [BH12] B. Bramham and H. Hofer, First steps towards a symplectic dynamics, Surveys in differential geometry. Vol. XVII, Surv. Differ. Geom., vol. 17, Int. Press, Boston, MA, 2012, pp. 127-177. MR 3076060, https://doi.org/10.4310/SDG.2012.v17.n1.a3
  • [BN77] M. Brown and W. D. Neumann, Proof of the Poincaré-Birkhoff fixed point theorem, Michigan Math. J. 24 (1977), no. 1, 21-31. MR 0448339
  • [Br94] Alexander D. Bruno, The restricted 3-body problem: plane periodic orbits, De Gruyter Expositions in Mathematics, vol. 17, Walter de Gruyter & Co., Berlin, 1994. Translated from the Russian by Bálint Érdi; With a preface by Victor G. Szebehely. MR 1301328
  • [Ca82] Patricia H. Carter, An improvement of the Poincaré-Birkhoff fixed point theorem, Trans. Amer. Math. Soc. 269 (1982), no. 1, 285-299. MR 637039, https://doi.org/10.2307/1998604
  • [Ch84] Marc Chaperon, Une idée du type ``géodésiques brisées'' pour les systèmes hamiltoniens, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 13, 293-296 (French, with English summary). MR 765426
  • [Ch84b] Marc Chaperon, An elementary proof of the Conley-Zehnder theorem in symplectic geometry, Dynamical systems and bifurcations (Groningen, 1984) Lecture Notes in Math., vol. 1125, Springer, Berlin, 1985, pp. 1-8. MR 798078, https://doi.org/10.1007/BFb0075631
  • [Ch89] Marc Chaperon, Recent results in symplectic geometry, Dynamical systems and ergodic theory (Warsaw, 1986) Banach Center Publ., vol. 23, PWN, Warsaw, 1989, pp. 143-159. MR 1102710
  • [CZ83] C. C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnol'd, Invent. Math. 73 (1983), no. 1, 33-49. MR 707347, https://doi.org/10.1007/BF01393824
  • [Di83] Wei Yue Ding, A generalization of the Poincaré-Birkhoff theorem, Proc. Amer. Math. Soc. 88 (1983), no. 2, 341-346. MR 695272, https://doi.org/10.2307/2044730
  • [Do53] J. L. Doob, Random processes, John Wiley and Sons, Inc., New York; Chapman and Hall, Limited, London, 1953. viii+654 pp.
  • [DV80] D. J. Daley and D. Vere-Jones, An introduction to the theory of point processes, Springer Series in Statistics, Springer-Verlag, New York, 1988. MR 950166
  • [Ei56] Albert Einstein, Investigations on the theory of the Brownian movement, Dover Publications, Inc., New York, 1956. Edited with notes by R. Fürth; Translated by A. D. Cowper. MR 0077443
  • [Fl88] Andreas Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), no. 3, 513-547. MR 965228
  • [Fl89] Andreas Floer, Witten's complex and infinite-dimensional Morse theory, J. Differential Geom. 30 (1989), no. 1, 207-221. MR 1001276
  • [Fl89b] Andreas Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989), no. 4, 575-611. MR 987770
  • [Fl91] Andreas Floer, Elliptic methods in variational problems, ICM-90, Mathematical Society of Japan, Tokyo; distributed outside Asia by the American Mathematical Society, Providence, RI, 1990. A plenary address presented at the International Congress of Mathematicians held in Kyoto, August 1990. MR 1126912
  • [Fr88] John Franks, Generalizations of the Poincaré-Birkhoff theorem, Ann. of Math. (2) 128 (1988), no. 1, 139-151. MR 951509, https://doi.org/10.2307/1971464
  • [Fr88b] John Franks, Recurrence and fixed points of surface homeomorphisms, Ergodic Theory Dynam. Systems 8$ ^*$ (1988), Charles Conley Memorial Issue, 99-107. MR 967632, https://doi.org/10.1017/S0143385700009366
  • [Fr06] John Franks, Erratum to: ``Generalizations of the Poincaré-Birkhoff theorem'' [Ann. of Math. (2) 128 (1988), no. 1, 139-151; MR0951509], Ann. of Math. (2) 164 (2006), no. 3, 1097-1098. MR 2259255, https://doi.org/10.4007/annals.2006.164.1097
  • [GK11] Joseph Galante and Vadim Kaloshin, Destruction of invariant curves in the restricted circular planar three-body problem by using comparison of action, Duke Math. J. 159 (2011), no. 2, 275-327. MR 2824484, https://doi.org/10.1215/00127094-1415878
  • [Go01] Christophe Golé, Symplectic twist maps: Global variational techniques, Advanced Series in Nonlinear Dynamics, vol. 18, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. MR 1992005
  • [Gu94] Lucien Guillou, Théorème de translation plane de Brouwer et généralisations du théorème de Poincaré-Birkhoff, Topology 33 (1994), no. 2, 331-351 (French). MR 1273787, https://doi.org/10.1016/0040-9383(94)90016-7
  • [Ho85] Helmut Hofer, Lagrangian embeddings and critical point theory, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 6, 407-462. MR 831040
  • [Ho12] H. Hofer, Arnold and symplectic geometry, Notices Amer. Math. Soc. 59 (2012), 499-502.
  • [HS95] H. Hofer and D. A. Salamon, Floer homology and Novikov rings, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 483-524. MR 1362838
  • [HWZ03] H. Hofer, K. Wysocki, and E. Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. (2) 157 (2003), no. 1, 125-255. MR 1954266, https://doi.org/10.4007/annals.2003.157.125
  • [HZ94] Helmut Hofer and Eduard Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 1994. MR 1306732
  • [Ja76] Howard Jacobowitz, Periodic solutions of $ x^{\prime\prime}+f(x,t)=0$ via the Poincaré-Birkhoff theorem, J. Differential Equations 20 (1976), no. 1, 37-52. MR 0393673, https://doi.org/10.1016/0022-0396(76)90094-2
  • [Ja77] Howard Jacobowitz, Corrigendum: The existence of the second fixed point: a correction to ``Periodic solutions of $ x''+f(x, t)=0$ via the Poincaré-Birkhoff theorem'' (J. Differential Equations 20 (1976), no. 1, 37-52), J. Differential Equations 25 (1977), no. 1, 148-149. MR 0437857, https://doi.org/10.1016/0022-0396(77)90187-5
  • [KH95] Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374
  • [Ko57] A. N. Kolmogorov, Théorie générale des systèmes dynamiques et mécanique classique, Proceedings of the International Congress of Mathematicians, Amsterdam, 1954, Vol. 1, Erven P. Noordhoff N.V., Groningen; North-Holland Publishing Co., Amsterdam, 1957, pp. 315-333 (French). MR 0097598
  • [Le91] Patrice Le Calvez, Propriétés dynamiques des difféomorphismes de l'anneau et du tore, Astérisque 204 (1991), 131 pp. Translation: Dynamical Properties of Diffeomorphisms of the Annulus and of the Torus. Translated from the 1991 French original by Philippe Mazaud. SMF/AMS Texts and Monographs, 4. Amer. Math. Soc., Providence, RI; Société Mathématique de France, Paris, 2000. x+105 pp. MR 1183304, MR 1747730
  • [Le10] Patrice Le Calvez and Jian Wang, Some remarks on the Poincaré-Birkhoff theorem, Proc. Amer. Math. Soc. 138 (2010), no. 2, 703-715. MR 2557187, https://doi.org/10.1090/S0002-9939-09-10105-3
  • [LT98] Gang Liu and Gang Tian, Floer homology and Arnold conjecture, J. Differential Geom. 49 (1998), no. 1, 1-74. MR 1642105
  • [Ma86] John N. Mather, Dynamics of area preserving maps, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 1190-1194. MR 934323
  • [MS98] Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. MR 1698616
  • [Mo73] Jürgen Moser, Stable and random motions in dynamical systems: With special emphasis on celestial mechanics, Annals of Mathematics Studies, No. 77, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1973. Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, N. J. MR 0442980
  • [Ne67] Edward Nelson, Dynamical theories of Brownian motion, Princeton University Press, Princeton, N.J., 1967. MR 0214150
  • [Ne77] Walter D. Neumann, Generalizations of the Poincaré Birkhoff fixed point theorem, Bull. Austral. Math. Soc. 17 (1977), no. 3, 375-389. MR 0584597, https://doi.org/10.1017/S0004972700010650
  • [On95] Kaoru Ono, On the Arnol'd conjecture for weakly monotone symplectic manifolds, Invent. Math. 119 (1995), no. 3, 519-537. MR 1317649, https://doi.org/10.1007/BF01245191
  • [Po93] H. Poincaré, Les méthodes nouvelles de la mécanique céleste. Tome III, Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics], Librairie Scientifique et Technique Albert Blanchard, Paris, 1987 (French). Invariant intégraux. Solutions périodiques du deuxième genre. Solutions doublement asymptotiques. [Integral invariants. Periodic solutions of the second kind. Doubly asymptotic solutions]; Reprint of the 1899 original; Bibliothèque Scientifique Albert Blanchard. [Albert Blanchard Scientific Library]. MR 926908
  • [Po12] H. Poincaré, Sur un théorème de géométrie, Rend. Circ. Mat. Palermo 33 (1912), 375-407.
  • [Pol01] Leonid Polterovich, The geometry of the group of symplectic diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001. MR 1826128
  • [Sm67] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 0228014, https://doi.org/10.1090/S0002-9904-1967-11798-1
  • [Vi11] Claude Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992), no. 4, 685-710. MR 1157321, https://doi.org/10.1007/BF01444643
  • [We83] Alan Weinstein, The local structure of Poisson manifolds, J. Differential Geom. 18 (1983), no. 3, 523-557. MR 723816
  • [We86] Alan Weinstein, On extending the Conley-Zehnder fixed point theorem to other manifolds, Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 541-544. MR 843640
  • [Ze86] E. Zehnder, The Arnol'd conjecture for fixed points of symplectic mappings and periodic solutions of Hamiltonian systems, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 1237-1246. MR 934328

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 60D05

Retrieve articles in all journals with MSC (2010): 60D05


Additional Information

Álvaro Pelayo
Affiliation: Department of Mathematics, University of California, San Diego, 9500 Gilman Drive #0112, La Jolla, California 92093-0112
Email: alpelayo@math.ucsd.edu

Fraydoun Rezakhanlou
Affiliation: Department of Mathematics, University of California Berkeley, Berkeley, California 94720-3840
Email: rezakhan@math.berkeley.edu

DOI: https://doi.org/10.1090/tran/6967
Received by editor(s): February 5, 2015
Received by editor(s) in revised form: March 24, 2016, and April 14, 2016
Published electronically: August 15, 2017
Additional Notes: The first author was supported by NSF Grants DMS-1055897, DMS-1518420, and DMS-0635607, a J. Tinsely Oden Faculty Fellowship from the University of Texas, and an Oberwolfach Leibniz Fellowship
The second author was supported in part by NSF Grant DMS-1106526 and DMS-1407723
Dedicated: To Alan Weinstein on his 70th birthday, with admiration.
The authors dedicate this article to Alan Weinstein, whose fundamental and deep insights in so many areas of geometry are a continuous source of inspiration.
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society