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STRONG MODULARITY OF REDUCIBLE GALOIS

REPRESENTATIONS

NICOLAS BILLEREY AND RICARDO MENARES

Abstract. Let ρ : Gal(Q/Q) → GL2(Fl) be an odd, semi-simple Galois rep-

resentation. Here, l ≥ 5 is prime and Fl is an algebraic closure of the finite
field Z/lZ. When the representation is irreducible, the strongest form of Serre’s
original modularity conjecture (which is now proved) asserts that ρ arises from

a cuspidal eigenform of type (N, k, ε) over Fl, where N , k and ε are, respec-
tively, the level, weight and character attached to ρ by Serre.

In this paper we characterize, under the assumption l > k + 1, reducible
semi-simple representations, that we call strongly modular, such that the same
result holds. This characterization generalizes a classical theorem of Ribet per-
taining to the case N = 1. When the representation is not strongly modular,
we give a necessary and sufficient condition on primes p not dividing Nl for
which ρ arises in level Np, hence generalizing a classical theorem of Mazur
concerning the case (N, k) = (1, 2).

The proofs rely on the classical analytic theory of Eisenstein series and on
local properties of automorphic representations attached to newforms.

Introduction

Let l be a prime number. We denote by Fl and Q algebraic closures of Fl = Z/lZ
and the rational field Q, respectively. In this article we are interested in Galois
representations of the form

(1) ρ : Gal(Q/Q) −→ GL2(Fl),

where ρ is a continuous homomorphism. Let N ≥ 1 and k ≥ 2 be two integers

with N coprime to l and let ε : (Z/NZ)× → F
×
l be a character. Let f be a cusp

form of type (N, k, ε) over Fl (in the sense of [Ser87, Déf., p. 193]) which is an
eigenfunction for the p-th Hecke operator with eigenvalue ap in Fl for each prime
number p. By work of Deligne, to such a form f , one can attach a (unique up to
isomorphism) semi-simple odd Galois representation ρf which is unramified outside
Nl and satisfies the following property : If Frobp denotes a Frobenius element at a
prime p � Nl, then the characteristic polynomial of ρf (Frobp) is given by

X2 − apX + ε(p)pk−1.

According to a standard terminology, a Galois representation ρ is called modular if
it is isomorphic to ρf for some f as above. In that case, we also say that ρ arises
from f .
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Moreover, to any given Galois representation ρ, Serre attaches in [Ser87, §§1-2]
a triple (N, k, ε), which we refer to as the Serre type of ρ, consisting of an integer
N ≥ 1 coprime to l, an integer k ≥ 2 and a group homomorphism ε : (Z/NZ)× →
F

×
l which are called the conductor, weight and character of ρ, respectively.
In this paper, we shall say that a Galois representation ρ is strongly modular if

it arises from a cuspidal eigenform f over Fl of type (N, k, ε) where (N, k, ε) is the
Serre type of ρ.

With this terminology, the strong form ([Ser87, (3.2.4?)]) of Serre’s modularity
conjecture, asserts that any odd, irreducible Galois representation ρ as in (1), with
l ≥ 5, is strongly modular. This conjecture has now been proved through the
combined work of many mathematicians (see [KW09a,KW09b] and the references
therein).

We remark that the results of Carayol (cf. [Car86, Thm. (A)] and the considera-
tions in [Car89, 1.-2.]), ensure that whenever ρ is strongly modular, the eigenform
f can be taken to be the reduction of a newform F (in characteristic zero) of level
N .

In this article, we address the case where ρ is reducible. Let

ν1, ν2 : Gal(Q/Q) −→ F
×
l

be continuous characters and assume that ρ = ν1⊕ ν2 defines an odd (semi-simple)
Galois representation of Serre type (N, k, ε). Then, ρ is modular (e.g. see [BM15,
Thm. 2.1]) but need not be strongly modular. Our task is to provide a necessary
and sufficient condition for such a reducible Galois representation to be strongly
modular. Thanks to Ribet, such a characterization is known in the case N = 1
under the assumption l > k + 1 (see [Rib75, Lem. 5.2] or [BM15, Cor. 3.7] for a
reformulation in this context). Under the same assumption, we prove in this paper
a generalization of this result to arbitrary conductors.

Let η : Gal(Q/Q) → F
×
l be a character unramified at l. For any integer k ≥ 2

satisfying l > k+1, we define in subsection 1.2 a mod l Bernoulli number Bk,η ∈ Fl

associated with η (our Bk,η is essentially the reduction of a classical k-th Bernoulli
number attached to a lift of η, but some care has to be taken due to denominators
and the choice of place). For every prime number p, set

η(p) =

{
η(Frobp) if η is unramified at p,
0 if η is ramified at p.

In this notation, the following is the main result of the paper.

Theorem 1. Let ν1, ν2 : Gal(Q/Q) → F
×
l be characters defining an odd (semi-

simple) Galois representation ρ = ν1 ⊕ ν2 of Serre type (N, k, ε) with l > k + 1.

Then, there exist characters ε1, ε2 : Gal(Q/Q) → F
×
l unramified at l such that

ρ = ε1 ⊕ ε2χ
k−1
l , where χl is the mod l cyclotomic character. Set η = ε−1

1 ε2. The
representation ρ is strongly modular if and only if

either Bk,η = 0 or η(p)pk = 1 for some prime p dividing N.

If the representation ρ alluded to above is not strongly modular, we give in
Theorem 2 a precise characterization (under the same assumption as before) of the
primes M � Nl for which ρ arises from a cusp form of type (NM, k, ε). Such a
theorem extends a result of Mazur ([Maz77, Prop. 5.12]), that handles the case
(N, k) = (1, 2), to arbitrary weights and conductors.
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Theorem 2. In the same notation and under the same assumptions as in Theo-
rem 1, assume moreover that ρ is not strongly modular. Let M be a prime number
not dividing Nl. Then ρ arises from a modular form of type (NM, k, ε) if and only
if {

M ≡ 1 (mod l) if (N, k) = (1, 2) (Mazur),
η(M)Mk = 1 if (N, k) �= (1, 2).

In particular, there are infinitely many such primes.

We remark that, due to the results of Carayol already mentioned, the modular
form over Fl in Theorem 2 can be taken to be the reduction of a newform of level
NM (cf. subsection 3.2 of this article).

Although the details need to be treated separately, the overall strategy for prov-
ing both results is the same and relies on properties of characteristic zero eigenforms
and their attached automorphic representations. Let us briefly describe this strat-
egy in the case of Theorem 1. Let ρ be as the statement of the theorem. Attached
to such a reducible representation is a specific Eisenstein series E. If ρ is strongly
modular, then there must occur a congruence between E and a certain cuspidal
(new) eigenform of weight k and level N . This in turn implies that the constant
terms of E vanish at all cusps after reduction modulo l, leading to the necessary
conditions of the theorem. Conversely, if these conditions hold, then we prove that
the reduction of E modulo l is a cusp form f over Fl of the same type as ρ such
that ρ � ρf .

The paper is organized as follows. In Section 1, we define the Bernoulli numbers
attached to mod l Galois characters that appear in the statement of Theorem 1
above and compute the constant term at the various cusps of a particular Eisenstein
series which is of crucial use in the proofs of our results. After quickly recalling
in Section 2 some background on cuspidal eigenforms and Hecke operators in the
adelic setting, we prove in Section 3 our two main theorems.

1. Bernoulli numbers and Eisenstein series

In this section we recall some classical definitions and integrality results on
Bernoulli numbers attached to Dirichlet characters. Also, we compute the con-
stant term in the q-expansion at the cusps of the modular curve X1(N) of some
specific Eisenstein series that will be used in the sequel. The final computation is
stated in Proposition 4 below.

1.1. Notation and definitions. Let φ be a primitive Dirichlet character of con-
ductor f ≥ 1. The Gauss sum attached to φ is defined by

W (φ) =

f∑
n=1

φ(n)e2iπn/f.

It is a non-zero algebraic integer whose norm is a power of f. The (generalized)
Bernoulli numbers (Bm,φ)m≥1 associated with φ are defined by the following ex-
pansion:

(2)

f∑
n=1

φ(n)
tent

eft − 1
=

∑
m≥0

Bm,φ
tm

m!
.
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Note that when φ = 1 is the trivial character (of conductor 1), then, for every
integer m ≥ 2, we have Bm,φ = Bm, where Bm denotes the classical m-th Bernoulli
number.

1.2. Bernoulli numbers of mod l characters. Let η : Gal(Q/Q) → F
×
l be a

Galois character unramified at l. Denote by c0 the conductor of η (coprime to l by
assumption) and identify η with a character:

η : (Z/c0Z)
× −→ F

×
l .

The aim of this subsection is to define the k-th Bernoulli number attached to η for
any integer k ≥ 2 such that l > k+1. This definition relies on integrality properties
of Bernoulli numbers attached to Dirichlet characters which we now recall.

Let w be a place of Q above l and let Zw be the local ring of w-integral algebraic
numbers in Q. The residue field kw of w identifies with an algebraic closure of Fl.
Fix an isomorphism ι : kw → Fl and consider the composition map

νw : Zw → kw
ι→ Fl.

We may then consider the multiplicative lift

ψ : (Z/c0Z)
× −→ Z

×

of η with respect to w. That is, ψ is the unique character with values in the roots
of unity of prime-to-l order such that

νw(ψ(x)) = η(x), for all x ∈ (Z/c0Z)
×.

We now state the integrality result we need to define our Bernoulli numbers
associated to η.

Lemma 3. For any integer k ≥ 2 such that l > k + 1, the Bernoulli number Bk,ψ

is w-integral.

Proof. Let k be an integer as in the statement of the lemma. We easily check
on the definition (2) that if ψ(−1) �= (−1)k, then Bk,ψ = 0. Assume therefore
that ψ(−1) = (−1)k. If ψ is the trivial character, then k must be an even integer
and the corresponding Bernoulli number Bk,ψ is nothing but the classical Bernoulli
number Bk. The Van Staudt-Clausen theorem ensures that the prime divisors p of
the denominator of Bk satisfy p− 1 | k. Since l > k + 1, the prime number l does
not divide the denominator of Bk, as desired.

Assume therefore ψ is non-trivial. Let

d =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if c0 admits two different prime divisors,
2 if c0 = 4,
1 if c0 = 2n, n > 2,
kc0 if c0 > 2 is a prime number,
1− ψ(1 + p) if c0 = pn, p > 2, n > 1, p is a prime number.

By a theorem of Carlitz (see [Car59a] and [Car59b]), dk−1Bk,ψ is an algebraic
integer. Hence, we are reduced to verify that w does not divide d.

Assume that c0 = pn, where p is an odd prime number and n ≥ 2. We assume by
contradiction that w divides d = 1−ψ(1+ p). Let H ⊆ (Z/pnZ)× be the subgroup
spanned by 1 + p. Taking the reduction map νw attached to w, we conclude that
η is trivial on H. Since H is the kernel of the natural map (Z/pnZ)× → (Z/pZ)×,
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we conclude that η can be factored through (Z/pZ)×, contradicting the primitivity
of η.

If c0 ≥ 3 is not of the form discussed in the previous paragraph, the fact that
l � d clearly follows from the definition of d and the hypothesis on k, l and c0. �

Using this result, we now set, for any integer k as above,

(3) Bk,η = νw (Bk,ψ) ∈ Fl.

Let w′ be another place of Q over l. There exists σ ∈ Gal(Q/Q) such that w′ =
σ(w) and we identify the residue field kw′ (of the ring of w′-integral algebraic
numbers in Q) with Fl via ι ◦ σ−1. Then σ(ψ) is the multiplicative lift of η with
respect to the place w′ = σ(w) and since we have

Bk,σ(ψ) = σ (Bk,ψ)

the definition (3) is independent of the choice of the place w. We refer to Bk,η ∈ Fl

as the k-th Bernoulli number associated with η.

1.3. The setting. In this subsection we set some notation and definitions that will
be used in the rest of this section. Let k ≥ 2 be an integer. We set

Ck =
(−2iπ)k

(k − 1)!
.

Let

χi : (Z/ciZ)
× −→ C×, i = 1, 2,

be primitive Dirichlet characters such that χ1(−1)χ2(−1) = (−1)k. Denote by χi

the complex conjugate of χi, i = 1, 2. Put N = c1c2. For k ≥ 3 and z in the
complex upper half-plane H, let

Gχ1,χ2

k (z) =
∑

(m,n)∈Z2\{(0,0)}

χ1(m)χ2(n)

(mz + n)k
.

On the other hand, for any ε > 0, we consider

Gχ1,χ2

2,ε (z) =
∑

(m,n)∈Z2\{(0,0)}

χ1(m)χ2(n)

(mz + n)2|mz + n|2ε (z ∈ H).

We remark that our functions Gχ1,χ2

k (z) (k ≥ 3) and Gχ1,χ2

2,ε (z) correspond to

the functions Ek(z;χ, ψ) and E2(z, ε;χ, ψ), respectively, defined in Eqs. (7.1.1)
and (7.2.1) of [Miy06] with (χ, ψ) = (χ1, χ2).

From now on, and until the end of this section, assume that either N > 1 or
k > 2 and denote by Eχ1,χ2

k the function defined by

(4) Eχ1,χ2

k (z) = −δ(χ1)
Bk,χ2

2k
+

∑
n≥1

σχ1,χ2

k−1 (n)qn (q = e2πiz, z ∈ H),

where

σχ1,χ2

k−1 (n) =
∑
m|n

χ1(n/m)χ2(m)mk−1, δ(χ1) =

{
1 if χ1 is trivial,
0 otherwise,

and Bk,χ2
denotes the k-th Bernoulli number associated with χ2 (see subsec-

tion 1.1).
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According to [Miy06, Thm. 7.1.3 and Eq. (7.1.13)], we have

(5) Gχ1,χ2

k (c2z) =
2CkW (χ2)

ck2
Eχ1,χ2

k (z), for k ≥ 3,

and similarly using Theorem 7.2.12, we have

(6) lim
ε→0+

Gχ1,χ2

2,ε (c2z) =
2C2W (χ2)

c22
Eχ1,χ2

2 (z).

According to loc. cit., §7.1 and §7.2 for k ≥ 3 and k = 2, respectively, together
with Theorem 4.7.1, we have that Eχ1,χ2

k is an Eisenstein series of weight k, level N
and Nebentypus character χ1χ2.

1.4. Computation of the constant terms. We keep the notation and assump-
tions of the previous subsection and moreover denote by c0 the conductor of the
primitive character (χ1χ2)0 associated with χ1χ2. For any integer M we denote by
αM the usual degeneracy operator given by αMf(z) = f(Mz).

For a given matrix γ ∈ SL2(Z), we let

Υχ1,χ2

k (γ,M) = lim
Im(z)→∞

(
(αMEχ1,χ2

k ) |kγ
)
(z)

be the constant term of the Fourier expansion at ∞ of (αMEχ1,χ2

k ) |kγ. Here, the
notation |k refers to the classical slash operator acting on weight k modular forms.

The main goal of this section is the computation, embodied in Proposition 4
below, of the constant term Υχ1,χ2

k (γ,M).

Proposition 4. Let γ =
(
u β
v δ

)
∈ SL2(Z) and let M ≥ 1 be an integer. Put r =

gcd(v,M), v′ = v/r and M ′ = M/r. If c2 � v′, then we have that Υχ1,χ2

k (γ,M) = 0.
Otherwise, if c2 | v′, then

Υχ1,χ2

k (γ,M) �= 0 ⇐⇒ gcd

(
v′

c2
, c1

)
= 1.

Moreover, in that case, we have that Υχ1,χ2

k (γ,M) is given by the non-zero algebraic
number

Υχ1,χ2

k (γ,M) = ξ ·
(

c2

M ′c0

)k

· W ((χ1χ2)0)

W (χ2)
·
Bk,(χ1χ2)0

2k

∏
p|N

(
1− (χ1χ2)0 (p)p

−k
)
,

where ξ = −χ2(δ)χ2(M
′)χ1 (−v′/c2) is a root of unity and p runs over the prime

divisors of N .

Remark 1. The result above generalizes the special cases (χ1, χ2,M) = (χ1, χ
−1
1 , 1)

and (χ1, k) = (1,≥ 3) stated in [BD14, Prop. 2.8] and [BM15, Prop. 1.2] respec-
tively. In this paper, we not only need the above statement in its full generality
and precision, but we also provide a unified and (slightly) simplified proof of these
previous results.

The following result is easily deduced from the above proposition and will be of
use in Section 3.

Corollary 5. In the notation of Proposition 4, assume M and N are coprime.
Then, we have

Υχ1,χ2

k (γ,M) =
( r

M

)k

χ1(r)χ2(r)χ2(M)Υχ1,χ2

k (γ, 1).
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We break the proof of Proposition 4 in several steps. The proof is given at the
end of this paragraph, except for the justification of an intermediary step in the
case k = 2, which is dealt with in the next subsection.

Lemma 6. Under the same hypothesis as in Proposition 4, we have that

Υχ1,χ2

k (γ,M) =
ck2

2CkW (χ2)
·

∑
(m,n)∈C

χ1(m)χ2(n)

(mMc2β + nδ)k
,

where C =
{
(m,n) ∈ Z2\{(0, 0)} : mMc2u+ nv = 0

}
.

Proof of Lemma 6 in the case k > 2. Using (5), we have that

2CkW (χ2)

ck2
Υχ1,χ2

k (γ,M) = lim
Im(z)→∞

(
(αMc2G

χ1,χ2

k ) |kγ
)
(z).

Also, we have(
(αMc2G

χ1,χ2

k ) |kγ
)
(z) =

∑
(m,n)∈Z2

(m,n) �=(0,0)

χ1(m)χ2(n)

(z(mMc2u+ nv) +mMc2β + nδ)k
,

where the above sum is absolutely convergent since k ≥ 3. We can therefore
exchange limit and summation, yielding the result. �

Remark 2. When k = 2, the sum in the last equation of the previous proof is not
absolutely convergent and it becomes necessary to give additional considerations,
that we present in subsection 1.5, in order to justify the interchange of limit and
summation. The full proof of Lemma 6 is thus achieved in Lemma 10 below.

We now prove the following key result assuming the validity of Lemma 6 for
any k ≥ 2.

Lemma 7. Under the same hypothesis as in Proposition 4. If c2 � v′, then we have
Υχ1,χ2

k (γ,M) = 0. Otherwise, if c2 | v′, then we have

Υχ1,χ2

k (γ,M) =
χ2(M

′u)χ1(−v′/c2)

M ′k · ck2

CkW (χ2)
· L(k, χ1χ2),

where L(k, χ1χ2) =
∑

n≥1(χ1χ2)(n)n
−k.

Proof. For simplicity, put Υ = Υχ1,χ2

k (γ,M).

(i) Assume u = 0. Then, −vβ = 1, implying v ∈ {±1}, M ′ = M and v′ = v.
Also, the set C in Lemma 6 satisfies C = (Z \ {0})× {0}. If χ2 �= 1 (that is,
if c2 � v′), we have that χ2(0) = 0 and then Υ = 0 as claimed.

Assume now that χ2 = 1. Then, c2 = W (χ2) = 1 and χ1(−1) = (−1)k.
These relations imply χ1(−v) = β−k. On the other hand, Lemma 6 ensures
that

2CkΥ =
∑
m∈Z
m �=0

χ1(m)

(mMβ)k
=

2

(βM)k
L(k, χ1) =

2χ1(−v)

Mk
L(k, χ1),

concluding the proof in this case.
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(ii) Assume u �= 0. We have the following.

Claim. Let n ∈ Z \ {0} with gcd(n, c2) = 1. Then, there exists m ∈ Z such
that (m,n) ∈ C if and only if M ′u|n and c2 | v′. Furthermore, in this case we
have that

(7) m = − n

M ′u
· v

′

c2
and mMc2β + nδ =

n

u
.

Proof of the claim. If (m,n) ∈ C, then mM ′c2u + nv′ = 0. We have that
gcd(M ′, v′) = 1 by definition. Moreover, γ ∈ SL2(Z) implies gcd(u, v) = 1,
hence M ′u | n. On the other hand, since gcd(c2, n) = 1, we have that c2 | v′.

Conversely, if M ′u | n and c2 | v′, then the integer m = − n
M ′u · v′

c2
satisfies

(m,n) ∈ C.
Finally, if the equivalence is satisfied, we easily check using the relation

uδ − vβ = 1, that the second relation in (7) holds. �

Using the claim and Lemma 6, we have that Υ = 0 if c2 � v′. Otherwise, if
c2 | v′, then we have

2CkW (χ2)

ck2
Υ =

∑
M ′u|n
n�=0

χ1(n/M
′u)χ1(−v′/c2)χ2(n)(

n
u

)k
= χ1(−v′/c2)

∑
t∈Z
t�=0

χ1(t)χ2(M
′ut)

(M ′t)k
(n = M ′ut)

=
χ1(−v′/c2)χ2(M

′u)

M ′k

∑
t∈Z
t�=0

χ1(t)χ2(t)

tk

=
χ1(−v′/c2)χ2(M

′u)

M ′k 2L(k, χ1χ2),

since χ1(−1)χ2(−1) = (−1)k. This finishes the proof of Lemma 7. �

Proof of Proposition 4. According to Lemma 7, it remains to deal with the case
where c2 | v′. In that case, by reducing the equality uδ− vβ = 1 modulo c2, we get
uδ ≡ 1 (mod c2). Furthermore, we have gcd(M ′, c2) | v′ and hence gcd(M ′, c2) = 1.
Therefore if we assume that gcd(v′/c2, c1) = 1, it follows that

−χ1(−v′/c2)χ2(M
′u) = −χ1(−v′/c2)χ2(δ)χ2(M

′) = ξ

is a root of unity.
Furthermore, by [Miy06, (3.3.14)], we have

L(k, χ1χ2) = L(k, (χ1χ2)0)
∏
p|N

(
1− (χ1χ2)0(p)

pk

)
,

where (χ1χ2)0 denotes the primitive character associated with χ1χ2. Moreover, it
follows from the Euler product for L(k, (χ1χ2)0) that L(k, χ1χ2) �= 0.
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Now using the assumption (χ1χ2)0(−1) = (−1)k and [Miy06, Thm. 3.3.4], we
get that

L(k, (χ1χ2)0) = −W ((χ1χ2)0) ·
Ck

ck0
·
Bk,(χ1χ2)0

2k
.

Combining these facts together with Lemma 7 concludes the proof of Proposition 4.
�

1.5. The case of weight 2. The goal of this subsection is to prove Lemma 6 in
the case k = 2. This is achieved in Lemma 10. For ε ≥ 0, we use the notation

w2,ε = w2|w|2ε, w ∈ C.

Let y0 > 0 be a positive real number. The notation g1 �y0
g2 means that there

exists a positive constant C, depending only on y0, such that |g1(r)| ≤ C|g2(r)| for
all r in the common domain of g1, g2.

Let

Sε(z) =
∑
n∈Z

1

(z + n)2,ε
, z ∈ C \R.

For z ∈ H, the function Sε(z) corresponds to the function S(z; 2 + ε, ε) in the
notation of [Miy06, (7.2.7)].

Lemma 8. Fix y0 > 0. Then, we have that

Sε(z) �y0

1

Γ(ε)|y|1+2ε
+ e−2π|y|, y = Im(z), |y| ≥ y0, 0 < ε ≤ 1,

where for any real number s > 0, Γ(s) =
∫∞
0

e−tts−1dt.

Proof. Since we have Sε(x − iy) = Sε(−x + iy), we can assume that y ≥ y0. For
m ∈ Z, let us denote by ξε(y;m) the function ξ(y; 2 + ε, ε;m) of [Miy06, (7.2.11)].
According to Theorem 7.2.8 of loc. cit., we then have

(8) Sε(z) = ξε(y; 0) +
∑
m∈Z
m �=0

e2πimxξε(y;m), z = x+ iy,

where the series converges absolutely. Furthermore, for m ∈ Z, we have by loc. cit.,
Theorem 7.2.5, that

ξε(y;m) =

⎧⎪⎪⎨⎪⎪⎩
− (2π)2+ε

Γ(2+ε)
1

(2y)εm
1+εe−2πymω(4πym; 2 + ε, ε) if m > 0,

− (2π)2+2εΓ(1+2ε)
Γ(2+ε)Γ(ε)

1
(4πy)1+2ε if m = 0,

− (2π)ε

Γ(ε)
1

(2y)2+ε
1

|m|1−ε e
−2πy|m|ω(4πy|m|; ε, 2 + ε) if m < 0.

The definition of the function ω is stated in loc. cit., (7.2.31). It follows from
Theorem 7.2.7 in loc. cit. that for all m ∈ Z \ {0}, y ≥ y0 and 0 < ε ≤ 1, we have

ω(4πy|m|; 2 + ε, ε) �y0
1 and ω(4πy|m|; ε, 2 + ε) �y0

1.

Therefore, for all y ≥ y0 and 0 < ε ≤ 1 we have

ξε(y;m) �y0

⎧⎨⎩
m2e−2πym if m > 0,

1
Γ(ε)y1+2ε if m = 0,

e−2πy|m| if m < 0,
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and (8) implies

Sε(z) �y0

1

Γ(ε)y1+2ε
+

∑
m≥1

m2e−2πym +
∑
m≥1

e−2πym.

On the other hand, for all y ≥ y0, we have∑
m≥1

(m2 + 1)e−2πym =
e−2πy(e−4πy − e−2πy + 2)

(1− e−2πy)3
�y0

e−2πy,

hence the result follows. �

Lemma 9. For any a1, a2, D ∈ Z with D �= 0, set

σε(z; a1, a2, D) =
∑

(m,n)∈Z2

a1+Dm �=0

1

(z(a1 +Dm) + a2 +Dn)2,ε
.

Then, we have that

lim
Im(z)→∞

lim
ε→0+

σε(z; a1, a2, D) = 0.

Proof. Assume y = Im(z) ≥ 1. We have that

σε(z; a1, a2, D) =
1

D2,ε

∑
m∈Z

a1+Dm �=0

∑
n∈Z

1(
z(a1

D +m) + a2

D + n
)2,ε

=
1

D2,ε

∑
m∈Z

a1+Dm �=0

Sε

(
z
(a1
D

+m
)
+

a2
D

)
.

Define

y0 = min

{∣∣∣∣Im(
z
(a1
D

+m
))∣∣∣∣ ; Im(z) ≥ 1,m ∈ Z : a1 +Dm �= 0

}
.

Since Z is discrete, we have y0 > 0. Using Lemma 8 with this choice of y0, we find
that for ε ≤ 1 ≤ y and m ∈ Z such that a1 +Dm �= 0, we have

Sε

(
z
(a1
D

+m
)
+

a2
D

)
�y0

1

Γ(ε)y1+2ε
· 1∣∣a1

D +m
∣∣1+2ε + e−2πy| a1

D +m|.

Therefore, we have

σε(z; a1, a2, D) �y0

1

|D|2(1+ε)

⎛⎝ 1

y1+2ε
· 1

Γ(ε)
· ζ(1 + 2ε) +

∑
n≥1

e−
2πyn
|D|

⎞⎠ .

Since
∑

n≥1 e
− 2πyn

|D| �y0
e−

2πy
|D| , we have that

lim sup
ε→0+

|σε(z; a1, a2, D)| �y0

1

D2

(
1

y
+ e−

2πy
|D|

)
.

This estimate justifies the claim. �
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Lemma 10. Lemma 6 is true for k = 2.

Proof. Using (6), we have in particular that

(9) Υχ1,χ2

2 (γ,M) =
c22

2C2W (χ2)
lim

Im(z)→∞
lim

ε→0+

( (
αMc2G

χ1,χ2

2,ε

)
|2γ

)
(z).

For ε > 0, let

(10) Tε(z) =
∑

(m,n)∈C

χ1(m)χ2(n)

(mMc2β + nδ)2,ε

and

Rε(z) =
∑

(m,n)/∈C
(m,n) �=(0,0)

χ1(m)χ2(n)

(z(mMc2u+ nv) +mMc2β + nδ)2,ε
,

where, as in Lemma 6,

C =
{
(m,n) ∈ Z2\{(0, 0)} : mMc2u+ nv = 0

}
.

Then, we have(
αMc2G

χ1,χ2

2,ε

)
|2γ(z) = |vz + δ|ε

∑
(m,n)∈Z2

(m,n) �=(0,0)

χ1(m)χ2(n)

(mMc2(uz + β) + n(vz + δ))2,ε

and therefore

lim
ε→0+

(
αMc2G

χ1,χ2

2,ε

)
|2γ(z) = lim

ε→0+
(Tε(z) +Rε(z)) .

Since the parameters appearing in the sum defining Tε are linked by a linear relation,
the series obtained by setting ε = 0 in (10) is absolutely convergent. Hence, we
have that

lim
ε→0+

Tε(z) =
∑

(m,n)∈C

χ1(m)χ2(n)

(mMc2β + nδ)2
.

In particular, this limit is independent of z. Hence, in light of (9), in order to finish
the proof we need to show that

(11) lim
y→∞

lim
ε→0+

Rε(z) = 0.

We have that

(12) Rε(z) =

c1−1∑
a=0

c2−1∑
b=0

χ1(a)χ2(b)
∑

(c,d)∈Ca,b

c�=0

1

(cz + d)2,ε
,

where

Ca,b = {(mMc2u+ nv,mMc2β + nδ) : m ≡ a mod c1, n ≡ b mod c2} .
Now we proceed to split each of the sums in (12) indexed by Ca,b in a finite

number of sums of the type handled by Lemma 9. Let

M =

(
Mc1c2u Mc1c2β
c2v c2δ

)
, θa,b = (aMc2u+ bv, aMc2β + bδ) .

Then, Ca,b = θa,b + Z2 ·M (here, we represent the elements of Z2 as row vectors).
Let D := detM = Mc1c

2
2. By the elementary divisors theorem, we have that
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DZ ×DZ ⊂ Z2 ·M is a subgroup of index D. Let {r1, r2, . . . , rD} be a system of
representatives of the quotient Z2 ·M/DZ×DZ. Then, in the notation of Lemma 9,
we have that

Rε(z) =

c1−1∑
a=0

c2−1∑
b=0

χ1(a)χ2(b)
D∑
i=1

σε

(
z; θa,b1 + ri,1, θ

a,b
2 + ri,2, D

)
,

where, for any vector w ∈ R2 we write w = (w1, w2). Then, using Lemma 9, we
deduce the truth of (11). �

2. Adelization of modular forms and Hecke operators

In this short section we briefly introduce some useful notation and make explicit
our normalizations for modular forms and Hecke operators in the adelic setting.

For simplicity, we set, in this section, G = GL2 considered as an algebraic group
over Q. We denote by A the ring of adèles of Q. Let

G(R)+ = {γ ∈ G(R) : det γ > 0}.
For each prime number p, we denote by ιp : G(Q) → G(A) the map induced by the
ring homomorphism Q ↪→ Qp → A. We define similarly ι∞ : G(R) → G(A) using
the inclusion R ↪→ A. We then embed G(Q) in G(A) diagonally (that is, using∏

p ιp × ι∞) and we embed G(R)+ at infinity (that is, using ι∞).
Let N ≥ 1 be a positive integer. For every prime number p set

Kp(N) =

{(
a b
c d

)
∈ G(Zp) : c ≡ 0 (mod NZp)

}
and define K0(N) =

∏
p Kp(N) as a subgroup of G(Af) where Af denotes the finite

adèles of Q. The strong approximation theorem ([Bum97, Thm. 3.3.1] for G then
implies that

(13) G(A) = G(Q)G(R)+K0(N).

We denote by ω the adelization (loc. cit., Prop. 3.1.2) of a given Dirichlet char-
acter χ of modulus N , and define the group homomorphism

λ : K0(N) −→ C×((
ap bp
cp dp

))
p

�−→
∏
p|N

ωp(dp) .

Let p be a prime divisor of N . For every integer n ∈ {0, . . . , p− 1}, define

ξn =

(
p n
0 1

)
.

Let k0 ∈ K0(N). Denote by
(
a b
c d

)
∈ Kp(N) the p-th component of k0. Let

n ∈ {0, . . . , p − 1} be an integer. Since p | N , we have that cn + d ∈ Z×
p and we

define m to be the unique integer in {0, . . . , p− 1} such that

(cn+ d)m ≡ an+ b (mod pZp).

Let k′0 = ιp(ξm)−1k0ιp(ξn). It follows from the matrix identity in G(Qp),

ξ−1
m

(
a b
c d

)
ξn =

(
a−mc an+b−m(cn+d)

p

cp cn+ d

)
,
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that

(14) k′0 ∈ K0(N) and λ(k′0) = λ(k0).

Let g ∈ G(A), that we decompose as

g = γg∞k0, γ ∈ G(Q), g∞ ∈ G(R)+, k0 ∈ K0(N)

using (13). We then check place-by-place that the following equality holds (see
loc. cit., p. 345):

(15) gιp(ξn) = (γξm)
(
ξ−1
m,∞g∞

) (
ξ−1
m,f ιp(ξm)k′0

)
∈ G(Q)G(R)+K0(N),

where n ∈ {0, . . . , p − 1} and m ∈ {0, . . . , p − 1}, k′0 ∈ K0(N) are defined above.
Here, ξm,f and ξm,∞ denote the finite and the infinite components of ξm ∈ G(A),
respectively.

Let k ≥ 2 be an integer. Denote by Sk (N,χ) the space of cuspidal modular forms
of weight k, level N and Nebentypus character χ. To a modular form F ∈ Sk (N,χ),
we attach

φF : G(A) → C, φF (g) = F (g∞ · i)j(g∞, i)−kλ(k0), g = γg∞k0.

Here, for g∞ =

(
a b
c d

)
∈ G(R)+, we have j(g∞, z) = (cz + d) det g

−1/2
∞ . Since

G(Q) ∩G(R)+K0(N) = Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}

and for every γ =
(
a b
c d

)
∈ Γ0(N), we have λ(γ) = χ(d)−1 (as ω is trivial on Q×),

the function φF is a well-defined automorphic form (loc. cit., §3.6). Define πF to
be the linear span of right translates of φF under G(A) and assume that F is an
eigenfunction for the Hecke operators away from N . Then πF decomposes as a
restricted tensor product

⊗′
πF,v, where v runs over the places of Q and πF,v is an

admissible irreducible representation of G(Qv) (loc. cit., §3.3). We now define the
p-th Hecke operator in this adelic setting as follows (note the factor 1/

√
p):

(16) Ũp =
1
√
p

p−1∑
n=0

πF,p(ξn).

The following result will be used in the proofs of Theorems 1 and 2.

Lemma 11. Let Up denote the p-th Hecke operator acting on Sk(N,χ). Then, we
have

p
k−1
2 ŨpφF = φUpF .
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Proof. Let g = γg∞k0 ∈ G(A). Then, in the notation of (15), we have (using the
fact that the map n �→ m is a bijection of {0, . . . , p− 1}):

ŨpφF (g) =
1
√
p

p−1∑
n=0

φF (gιp(ξn))

=
1
√
p

p−1∑
m=0

φF

(
(γξm)

(
ξ−1
m,∞g∞

) (
ξ−1
m,f ιp(ξm)k′0

))
=

1
√
p

p−1∑
m=0

F
((
ξ−1
m,∞g∞

)
· i
)
j
(
ξ−1
m,∞g∞, i

)−k
λ
(
ξ−1
m,f ιp(ξm)k′0

)
.

Furthermore, from the definition of ξm and (14), we have

λ
(
ξ−1
m,fιp(ξm)k′0

)
= λ(k′0) = λ(k0),

and from the automorphy relation for F , we have

F
((
ξ−1
m,∞g∞

)
· i
)
j
(
ξ−1
m,∞g∞, i

)−k
= p−k/2F

(
g∞ · i−m

p

)
j(g∞, i)−k.

We conclude that

ŨpφF (g) =
1

p(k+1)/2

p−1∑
m=0

F

(
g∞ · i−m

p

)
j(g∞, i)−kλ(k0).

Hence, the desired identity follows from the formula

UpF (z) =
1

p

p−1∑
m=0

F

(
z +m

p

)
=

1

p

p−1∑
m=0

F

(
z −m

p

)
, z ∈ H. �

3. Proofs of the main results

3.1. Proof of Theorem 1. Let ν1, ν2 : Gal(Q/Q) → F
×
l be characters such that

ρ = ν1⊕ν2 defines an odd (semi-simple) Galois representation of Serre type (N, k, ε).
Assume throughout that l > k + 1. Each of the characters νi (i = 1, 2) can be
decomposed as νi = εiχ

ai

l , where εi is unramified at l, ai is a non-negative integer
and χl denotes the mod l cyclotomic character. Without loss of generality, we may
further assume that 0 ≤ a1 ≤ a2 ≤ l − 2. According to Serre’s definition of the
weight k (see [Ser87, (2.3.2)]), we then have:

k =

{
1 + la1 + a2 if (a1, a2) �= (0, 0),
l if (a1, a2) = (0, 0).

Since we have assumed l > k + 1, it follows that (a1, a2) = (0, k − 1). This proves
the first part of Theorem 1.

Let us then prove the equivalence. Denote by c1 and c2 the conductors of ε1
and ε2, respectively. We have the Serre parameters ε = ε1ε2 and N = c1c2. If
(N, k) = (1, 2), then both ε1 and ε2 are trivial and therefore, in the notation of the
theorem, we have

B2,η = B2 (mod l) and B2 =
1

6
�≡ 0 (mod l).



STRONG MODULARITY OF REDUCIBLE GALOIS REPRESENTATIONS 981

On the other hand, there is no non-zero cuspidal eigenform of weight 2 and level 1
over Fl for l ≥ 5. Hence, the desired equivalence is established in this case.

From now on, let us then assume that either N > 1 or k > 2. Fix a place w
of Q above l and denote by χ1 and χ2 the multiplicative lifts with respect to w
(in the sense of subsection 1.2) of ε1 and ε2, respectively. We view χ = χ1χ2

as a Dirichlet character modulo N . The Eisenstein series Eχ1,χ2

k introduced in
subsection 1.3 (which is well-defined as we have (N, k) �= (1, 2)) has weight k,
level N and Nebentypus character χ. Moreover, it is a normalized eigenform for
the full Hecke algebra at level N . In particular, if we write

Eχ1,χ2

k (z) =
∑
n≥0

an (E
χ1,χ2

k ) e2iπzn (z ∈ H),

then its eigenvalue for the action of the Hecke operator at an arbitrary prime p is
given by

ap (E
χ1,χ2

k ) = χ1(p) + χ2(p)p
k−1.

By assumption, there exists an eigenform f of type (N, k, ε) over Fl such that, in
the notation of the Introduction, we have ρf � ρ. Let us write f =

∑
n≥1 anq

n as

in [Ser87, Déf. p. 193]. In other words, there exists F =
∑

n≥1 Anq
n a weight-k

cuspidal form of level N and Nebentypus character χ such that An ∈ Zw and

(17) νw(An) = an, for any integer n ≥ 1,

in the notation of subsection 1.2. By the Deligne-Serre lifting lemma ([DS74,
Lem. 6.11]), one may further assume that F is a normalized eigenform for all the
Hecke operators at level N . Denote by E the number field generated by the Hecke
eigenvalues of F and by λ the prime ideal above l in E induced by w. Let Eλ

be the completion of E at λ. Thanks to the isomorphism ρ � ρf and (17), the
semi-simplification of the reduction modulo λ of the λ-adic representation of F ,

ρF,λ : Gal(Q/Q) −→ GL2(Eλ),

is isomorphic to ρ. Since F has level N and ρ conductor N away from l, the form F
is actually a newform. For every prime p � Nl, we have

νw(Ap) = ε1(p) + ε2(p)p
k−1,

where, εi(p) = εi(Frobp) if εi is unramified at p and εi(p) = 0; otherwise, for
i = 1, 2. The next step is to extend these congruences to arbitrary primes p �= l,
as stated in the following key result. (Note that only the case N > 1 requires a
proof.)

Proposition 12. In this notation, we have

νw(Ap) = ε1(p) + ε2(p)p
k−1, for every prime p �= l.

Proof. We have seen that the equality holds for primes not dividing Nl. Let p be
a prime dividing N (note that, by definition, N is coprime to l and hence p �= l).
We denote by c the conductor of χ. We shall split the proof into three cases:

(1) ordp(N) = 1 and ordp(c) = 0;
(2) ordp(N) ≥ 2 and ordp(c) < ordp(N);
(3) ordp(N) = ordp(c).
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To deal with the first two cases, we first observe that if ordp(c) < ordp(N), then
both characters χ1 and χ2 are ramified at p. Indeed, since ordp(N) > 0 and
N = c1c2, at least one of the two characters χ1 and χ2 is ramified at p. On the
other hand, if the other one is unramified at p then, we have

ordp(c) = ordp(c1) + ordp(c2) = ordp(N),

obtaining a contradiction.
In the first case, using this observation, we obtain

1 = ordp(N) = ordp(c1) + ordp(c2) ≥ 2

and a contradiction. Case (1) therefore does not occur.
In the second case, we have that Ap = 0 ([Miy06, Thm. 4.6.17]) and by the above

observation, both χ1, χ2 (and hence ε1 and ε2) are ramified at p. We therefore have
the desired equality as both sides are zero.

It therefore remains to deal with the last case. Let φF be the adelization of F as
defined in Section 2. Denote by πF the corresponding automorphic representation.
Since F is p-new, then φF is a so-called new-vector for πF,p (in the sense of [LW12,

Thm. 2.2]). The endomorphism Ũp defined in (16) acts on the (one-dimensional)
vector space of new-vectors of πF,p by multiplication by an eigenvalue that we
denote by λ(πF,p). It then follows from Lemma 11 that we have

λ(πF,p) = Ap/p
(k−1)/2.

Using the assumption ordp(N) = ordp(c), we have that λ(πF,p) has absolute
value 1 and therefore is �= 0 ([Miy06, Thm. 4.6.17]). On the other hand, we see
from the classification of irreducible admissible infinite-dimensional smooth repre-
sentations of GL2(Qp) (as recalled in Table 1 of [LW12] for instance) that in this
case πF,p necessarily is a principal series π(μ1, μ2) associated with some characters
μ1, μ2 of Q×

p . Equating the Hecke eigenvalues we find that

(18) p(k−1)/2(μ∗
1(p) + μ∗

2(p)) = Ap,

where

μ∗
i (p) =

{
μi(p) if μi is unramified at p,
0 otherwise,

for i = 1, 2.

Let σλ(πF,p) be the representation of the local Weil group W (Qp/Qp) attached
to πF,p by the local Langlands correspondence. By a theorem of Carayol ([Car86,
Thm. (A)]), it agrees with (the restriction to the Weil group of) the local represen-
tation ρF,λ|Gal(Qp/Qp)

.

Let us denote by μ1 and μ2 the reductions modulo w of μ1 and μ2, respectively.
According to §0.5 in loc. cit., we therefore have the following equality of characters

of Q×
p with values in F

×
l :{

μ1χ
(k−1)/2
l , μ2χ

(k−1)/2
l

}
=

{
ε1, ε2χ

k−1
l

}
.

The result now follows from (18). �

Let us now consider the Eisenstein series Eχ1,χ2

k . Since both F and Eχ1,χ2

k are
eigenfunctions for the full Hecke algebra at level N , it follows from the previous
proposition and the multiplicativity of the Fourier coefficients that

νw(An) = νw (an (E
χ1,χ2

k )) , for all prime-to-l integers n.
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Note that by Lemma 3 and (4), the q-expansion of the Eisenstein series Eχ1,χ2

k

lies in Zw[[q]]. Let us denote by E its reduction modulo w. Then, both f and E
have the same image under the Θ-operator whose action on the q-expansions is q d

dq

(see [Kat77, Ch. II]).
We remark that, since we are assuming that k ≥ 2 and l � N , the space of

modular forms for Γ1(N) over Fl in the sense of Katz and in the sense of Serre are
naturally isomorphic [DI95, Theorem 12.3.7]. Then, since l > k + 1, we can use
[Kat77, Cor. 3] to assert that the Θ-operator is injective. Hence, E is a cuspidal
form over Fl. This implies that w divides the constant term of Eχ1,χ2

k at each of
the cusps.

In particular, it divides the constant term of the Fourier expansion at ∞ of
Eχ1,χ2

k |kγ, where γ =
(

1 0
c2 1

)
∈ SL2(Z). According to Proposition 4 (applied toM =

1 in its notation), w divides(
c2

c0

)k
W ((χ1χ2)0)

W (χ2)

Bk,(χ1χ2)0

2k

∏
p|N

(
1− (χ1χ2)0 (p)p

−k
)
.

However, c0, c2, W ((χ1χ2)0), 2k andW (χ2) are all coprime to l. Moreover, (χ1χ2)0
is nothing but the multiplicative lift of η = ε−1

1 ε2 with respect to w. Hence, either
Bk,η = 0, or there exists a prime p | N such that η(p)pk = 1. This proves the direct
implication in Theorem 1.

Conversely, assume that either condition of the theorem is satisfied. Then, by
definition of the characters χ1 and χ2 and of the Bernoulli number Bk,η, the place w
divides (the numerator of)

Bk,(χ1χ2)0 ·
∏
p|N

(
(χ1χ2)0(p)p

k − 1
)
.

Then, according to Proposition 4 (with M = 1), the constant term of the Eisenstein
series Eχ1,χ2

k vanishes at each of the cusp of the modular curve X1(N). Let f be its

reduction modulo w, which is an eigenform with coefficients in Fl. As we argued
before, f can be seen both as a Katz or Serre modular form. Then, the q-expansion
principle allows us to ensure that f is a cuspidal eigenform (cf. [DI95, Remark
12.3.5]).

On the other hand, for every prime q � Nl, we have

trace (ρf (Frobq)) = νw (aq(E
χ1,χ2

k )) = ε1(q) + ε2(q)q
k−1 = trace (ρ(Frobq)) .

Since det ρf = εχk−1
l = det ρ, the Chebotarev density and Brauer-Nesbitt theo-

rems, as explained in [DS74, Lem. 3.2], imply that ρf � ρ. Then, f is the desired
eigenform. This finishes the proof of Theorem 1.

3.2. Proof of Theorem 2. In the case (N, k) = (1, 2) (where we necessarily have
ρ � 1 ⊕ χl and hence ρ is not strongly modular), the result is due to Mazur
([Maz77, Prop. 5.12]).

We therefore assume throughout that (N, k) �= (1, 2) and start by proving the
direct implication.

Using the assumption that the representation ρ arises from a modular form f of
type (NM, k, ε) over Fl, we show as before that there exists F =

∑
n≥1 Anq

n, a
weight-k normalized cuspidal eigenform of level NM and Nebentypus character χ
with the following property. Let λ be the prime ideal of the coefficient field of F
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induced by w. The semi-simplification of the reduction modulo λ of the λ-adic rep-
resentation attached to F is isomorphic to ρ. Let F0 denote the newform associated
with F . The λ-adic representations attached to F0 and F are isomorphic. In par-
ticular, after reduction modulo λ and semi-simplification, they both give rise to ρ.
Since ρ has conductor N , it follows from [Car86, Thm. (A)] and the considerations
in [Car89, 1.-2.], that the level of F0 is divisible by N . Moreover, we have assumed
that ρ is not strongly modular, and thus the level of F0 is strictly greater than N .
Since it is a divisor of NM , it has to be equal to NM and F = F0 necessarily is
a newform. Therefore, considering its associated automorphic representation, we
prove the following result using the same arguments as in Proposition 12.

Proposition 13. In this notation, we have

νw(Ap) = ε1(p) + ε2(p)p
k−1, for every prime p �= l,M .

We now turn our attention to the local situation at M and prove the following
statement.

Proposition 14. We have

(1) either η(M)Mk = 1;
(2) or, η(M)Mk−2 = 1 and νw(AM ) = ε1(M).

Proof. According to [Miy06, Thm. 4.6.17(2)], we have AM �= 0. In particular, the
form F is M -primitive in the sense of [AL78, Def. p. 236] (see the remark right
after the definition). Therefore, according to Proposition 2.8 of [LW12], the local
component at M of the automorphic represention of F corresponds to a Steinberg
representation. Moreover, we have the following equality between sets of characters

of a decomposition group at M in Gal(Q/Q) with values in F
×
l :{

ε1, ε2χ
k−1
l

}
=

{
μχ

k/2
l , μχ

k/2−1
l

}
,

where μ is the unramified character that sends a Frobenius element atM to μ(M) =
νw

(
AM/Mk/2−1

)
. We therefore have two cases to consider:

• Assume that, locally at M , we have ε1 = μχ
k/2
l . Then, in particular,

we have ε1(M)2 = μ(M)2Mk. On the other hand, according to [Miy06,
Thm. 4.6.17], we have μ(M)2 = (ε1ε2)(M). Therefore, we get η(M)Mk =

1. (Note that the other equality, namely ε2χ
k−1
l = μχ

k/2−1
l , does not

provide any additional information.)

• Assume instead that, locally at M , we have ε1 = μχ
k/2−1
l . Then, on

the one hand, we have that ε1(M) = μ(M)Mk/2−1 and hence νw(AM ) =
ε1(M). On the other hand, we have (using loc. cit.) M2k−2ε2(M)2 =
μ(M)2Mk. Therefore, we get η(M)Mk−2 = 1. Hence the result follows.

(Once again, the other equality, namely ε2χ
k−1
l = μχ

k/2
l , does not give any

other information.) �

In order to finish the proof of Theorem 2, it therefore remains to show that,
under the assumption that ρ is not strongly modular, condition (14) in Proposition
14 implies condition (14). For that purpose, let us assume that condition (14) is
satisfied and consider the following Eisenstein series:

F1 = Eχ1,χ2

k − χ2(M)Mk−1αMEχ1,χ2

k .
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It is a well-known fact that F1 is an eigenform for the full Hecke algebra at levelNM
with eigenvalues

ap(F1) = χ1(p) + χ2(p)p
k−1, for primes p �= M,

and aM (F1) = χ1(M). In particular, as a consequence of Proposition 13 and our
assumption, we have

(19) νw (an(F1)) = νw(An), for every integer n coprime to l,

where {an(F1)}n≥1 denote the coefficients of the Fourier expansion of F1 at ∞.

By definition of F1, Lemma 3 and (4), this q-expansion lies in Zw[[q]]. Let us thus
denote by F1 the reduction of F1 modulo w. According to (19), F1 and the reduction
of F modulo w have the same image under the Θ-operator. Since l > k + 1, the
injectivity of Θ ([Kat77, Cor. 3]) implies that F1 is cuspidal. Therefore, we have
that w divides the numerator of the constant of the term of the Fourier expansion
of F1 at each cusp of the modular curve at level NM . According to Corollary 5,
such a constant term at the cusp 1/(Mc2) is given (up to roots of unity) by

Υχ1,χ2

k (γ, 1)
(
1− χ1(M)χ2(M)Mk−1

)
,

where γ ∈ SL2(Z) is such that γ · ∞ = 1/(Mc2). On the other hand, for such a
γ, thanks to Theorem 1 and Proposition 4, the assumption that ρ is not strongly
modular guarantees that Υχ1,χ2

k (γ, 1) is (non-zero and) not divisible by w. There-
fore, it follows that η(M)Mk−1 = 1 and hence M ≡ 1 (mod l) (as we have assumed
η(M)Mk−2 = 1). This implies the desired equality η(M)Mk = 1 and concludes
the proof of the direct implication.

In the other direction, assuming that η(M)Mk = 1, we now consider the Eisen-
stein series defined by

F2 = Eχ1,χ2

k − χ1(M)αMEχ1,χ2

k .

For any γ ∈ SL2(Z), let us denote by a0 (F2|kγ) the constant term of the Fourier
expansion at ∞ of F2|kγ. According to Corollary 5, using its notation, we have
that

a0 (F2|kγ) = Υχ1,χ2

k (γ, 1)

(
1−

( r

M

)k

(χ1χ2)(M/r)

)
,

where r = 1 or M . In both cases, using the assumption η(M)Mk = 1, we have
that νw (a0 (F2|kγ)) = 0. We denote by f the reduction of F2 modulo w. It is a
well-defined cuspidal form of type (NM, k, ε) over Fl which is an eigenform for the
full Hecke algebra at level NM with eigenvalue for the Hecke operator at p given
by

ε1(p) + ε2(p)p
k−1, for all primes p �= M.

Then, the Chebotarev density and Brauer-Nesbitt theorems, as explained in [DS74,
Lem. 3.2], imply that ρ arises from a form of type (NM, k, ε) as desired.
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matiques, BP 10448, F-63000 Clermont-Ferrand, France – and – CNRS, UMR 6620, LM,

F-63171 Aubière, France

E-mail address: Nicolas.Billerey@uca.fr
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