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POSITIVE SOLUTIONS FOR SUPER-SUBLINEAR INDEFINITE

PROBLEMS: HIGH MULTIPLICITY RESULTS

VIA COINCIDENCE DEGREE

ALBERTO BOSCAGGIN, GUGLIELMO FELTRIN, AND FABIO ZANOLIN

Abstract. We study the periodic boundary value problem associated with
the second order non-linear equation

u′′+
(
λa+(t)− μa−(t)

)
g(u) = 0,

where g(u) has superlinear growth at zero and sublinear growth at infinity. For
λ, μ positive and large, we prove the existence of 3m − 1 positive T -periodic
solutions when the weight function a(t) has m positive humps separated by m
negative ones (in a T -periodicity interval). As a byproduct of our approach
we also provide an abundance of positive subharmonic solutions and symbolic
dynamics. The proof is based on coincidence degree theory for locally compact
operators on open unbounded sets and also applies to Neumann and Dirichlet
boundary conditions. Finally, we deal with radially symmetric positive so-
lutions for the Neumann and the Dirichlet problems associated with elliptic
PDEs.

1. Introduction and statement of the main result

In this paper, we present some multiplicity results for positive solutions to bound-
ary value problems associated with non-linear differential equations of the type

(1.1) u′′ + q(t)g(u) = 0,

where q(t) is a sign-changing weight function and g(s) is a function with superlin-
ear growth at zero, sublinear growth at infinity and positive on ]0,+∞[. Due to
these assumptions, we refer to (1.1) as a super-sublinear indefinite problem. The
terminology “indefinite”, meaning that q(t) is of non-constant sign, was probably
introduced in [2] dealing with a linear eigenvalue problem and, starting with [31], it
has become very popular also in non-linear differential problems (especially when
g(s) is a superlinear function, for instance as g(s) ∼ sp with p > 1, so that (1.1) is
said to be superlinear indefinite; see [5, 6, 15, 28]).
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We now describe our setting in more detail. Denoting by R+ := [0,+∞[ the set
of non-negative real numbers, we assume that g : R+ → R+ is a continuous function
satisfying the sign hypothesis

(g∗) g(0) = 0, g(s) > 0 for s > 0,

as well as the conditions of superlinear growth at zero

(g0) lim
s→0+

g(s)

s
= 0

and sublinear growth at infinity

(g∞) lim
s→+∞

g(s)

s
= 0.

Concerning the weight function q(t), we find it convenient to write it as

q(t) = aλ,μ(t) := λa+(t)− μa−(t),

where a ∈ L1([0, T ]) is a sign-changing function, that is,∫ T

0

a+(t) dt �= 0 �=
∫ T

0

a−(t) dt,

and λ, μ > 0 are real parameters. Summing up, we deal with the equation

(1.2) u′′ +
(
λa+(t)− μa−(t)

)
g(u) = 0

and we investigate multiplicity of positive solutions (in the Carathéodory sense; see
[30]) to (1.2) in dependence of the parameters λ, μ > 0.

Results in this direction have already appeared in the literature. When (1.2)
is considered together with Dirichlet boundary conditions u(0) = u(T ) = 0, for
instance, it is well known that two positive solutions exist if λ > 0 is large enough
and for any value μ > 0. This is a classical result, on a line of research initiated
by Rabinowitz in [48] (dealing with the Dirichlet problem associated with a super-
sublinear elliptic PDE on a bounded domain; see also [1] for previous related results)
and later developed by many authors. Actually, typical versions of this theorem
do not take into account an indefinite weight function (that is, they are stated for
a− ≡ 0 in (1.2)), but nowadays standard tools (such as critical point theory, fixed
point theorems for operators on cones, dynamical systems techniques) permit us to
successfully handle also this more general situation. We refer to [14] for the precise
statement in the indefinite setting as well as to the introductions in [11, 12] for a
more complete presentation and bibliography on the subject.

As far as Neumann boundary conditions u′(0) = u′(T ) = 0 or T -periodic bound-
ary conditions u(T )−u(0) = u′(T )−u′(0) = 0 are taken into account, the problem
becomes slightly more subtle. Indeed, on one hand, the indefinite character of the
problems plays a crucial role, since no positive Neumann/periodic solutions to (1.2)
can exist if a− ≡ 0 or if a+ ≡ 0, as it is easily seen by integrating the equation
on [0, T ]. On the other hand, some restrictions on the ranges of the parameters
λ, μ > 0 also appear. Precisely, as already observed in previous papers [4, 12],
whenever g′(s) > 0 for any s > 0, a necessary condition for the existence of positive
Neumann/periodic solutions to (1.2) turns out to be∫ T

0

aλ,μ(t) dt < 0,
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which equivalently reads as

(1.3) μ > μ#(λ) := λ

∫ T

0
a+(t) dt∫ T

0
a−(t) dt

.

Hence, contrary to the Dirichlet problem, the existence of positive solutions cannot
be ensured for any μ > 0. However, under slightly more restrictive assumptions
than (g0) and (g∞) (like, for instance, g(s) ∼ sα with α > 1 at zero and g(s) ∼ sβ

with 0 < β < 1 at infinity), the existence of two positive Neumann/periodic solu-
tions to (1.2) is still guaranteed for λ > 0 large enough and μ satisfying (1.3). This
was shown in [12] using critical point theory and in [11] using a topological degree ar-
gument (this last proof working for the damped equation u′′+cu′+aλ,μ(t)g(u) = 0,
as well). In both the approaches condition (1.3) plays the role of pushing the non-
linearity below the principal eigenvalue k0 = 0 of the Neumann/periodic problem
both at zero and at infinity (notice that this is not needed if Dirichlet boundary
conditions are taken into account, since the first eigenvalue is strictly positive).

The above recalled results seem to be optimal from the point of view of the
multiplicity of solutions, in the sense that no more than two positive solutions can
be expected for a general weight. In this regard, sharp existence results of exactly
two solutions (at least for the Dirichlet problem and with a positive constant weight)
are described and surveyed in [34,46,47] (more specifically, see [47, Theorem 6.19]).

The aim of the present paper is to show that, on the other hand, many positive
solutions for the Dirichlet/Neumann/periodic boundary value problems associated
with (1.2) can be obtained by playing with the nodal behavior of the weight func-
tion: roughly speaking, we will require it to have m positive humps, together with
a large negative part (that is, μ � 0).

We now focus on the T -periodic boundary value problem associated with (1.2)
and we proceed to state our main result more precisely, as follows.

Let a : R → R be a T -periodic locally integrable function and suppose that

(a∗) there exist 2m+ 1 points (with m ≥ 1)

σ1 < τ1 < . . . < σi < τi < . . . < σm < τm < σm+1, with σm+1 − σ1 = T,

such that, for i = 1, . . . ,m, a(t) 
 0 on [σi, τi] and a(t) ≺ 0 on [τi, σi+1],

where, following a standard notation, w(t) 
 0 on a given interval means that
w(t) ≥ 0 almost everywhere with w �≡ 0 on that interval; moreover, w(t) ≺ 0
stands for −w(t) 
 0. Without loss of generality, due to the T -periodicity of the
function a(t), in the sequel we assume that σ1 = 0 and σm+1 = T . We also set, for
i = 1, . . . ,m,

(1.4) I+i := [σi, τi] and I−i := [τi, σi+1].

We look for solutions u(t) of (1.2) (in the Carathéodory sense) which are globally
defined on R with u(t) = u(t+ T ) > 0 for all t ∈ R. Such solutions will be referred
to as positive T -periodic. Then, the following result holds true.

Theorem 1.1. Let g : R+ → R+ be a continuous function satisfying (g∗), (g0)
and (g∞). Let a : R → R be a T -periodic locally integrable function satisfying (a∗).
Then there exists λ∗ > 0 such that for each λ > λ∗ there exists μ∗(λ) > 0 such that
for each μ > μ∗(λ) equation (1.2) has at least 3m − 1 positive T -periodic solutions.

More precisely, fixed an arbitrary constant ρ > 0 there exists λ∗ = λ∗(ρ) > 0
such that for each λ > λ∗ there exist two constants r, R with 0 < r < ρ < R
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and μ∗(λ) = μ∗(λ, r, R) > 0 such that for any μ > μ∗(λ) and any finite string
S = (S1, . . . ,Sm) ∈ {0, 1, 2}m, with S �= (0, . . . , 0), there exists a positive T -periodic
solution u(t) of (1.2) such that

• maxt∈I+
i
u(t) < r, if Si = 0;

• r < maxt∈I+
i
u(t) < ρ, if Si = 1;

• ρ < maxt∈I+
i
u(t) < R, if Si = 2.

Remark 1.1. As already anticipated, the same multiplicity result holds true for the
Neumann as well as for the Dirichlet problems associated with (1.2) on the interval
[0, T ]. Dealing with these boundary value problems, the weight function a(t) is
allowed to be negative on a right neighborhood of 0 and/or positive on a left neigh-
borhood of T . Indeed, what is crucial to obtain 3m − 1 positive solutions is the
fact that there are m positive humps of the weight function which are separated by
negative ones. Accordingly, if we study the Neumann or the Dirichlet problems on
[0, T ] it will be sufficient to suppose that there are m− 1 intervals where a(t) ≺ 0
separating m intervals where a(t) 
 0. On the other hand, the nature of periodic
boundary conditions requires that the positive humps of the weight coefficient are
separated by negative humps on [0, T ]/{0, T} � R/TZ � S1. This is the reason for
which condition (a∗) for the periodic problem is conventionally expressed assum-
ing that, in an interval of length T , the weight function starts positive and ends
negative. For a more detailed discussion, see Section 7.2. �

Let us now make some comments about Theorem 1.1, trying at first to explain
its meaning in an informal way. The existence of 3m − 1 positive solutions comes
from the possibility of prescribing, for a positive T -periodic solution of (1.2), the
behavior in each interval of positivity of the weight function a(t) among three pos-
sible ones: either the solution is “very small” on I+i (if Si = 0), or it is “small” (if
Si = 1) or it is “large” (if Si = 2). This is related to the fact that, as discussed
at the beginning of this introduction, three non-negative solutions for the Dirichlet
problem associated with u′′+λa+(t)g(u) = 0 on I+i are always available, when g(s)
is super-sublinear, for λ > 0 large enough: the trivial one, and two positive solutions
given by Rabinowitz’s theorem (cf. [48]). This point of view can be made completely
rigorous by showing that the solutions constructed in Theorem 1.1 converge, for
μ → +∞, to solutions of the Dirichlet problem associated with u′′+λa+(t)g(u) = 0
on each I+i and to zero on

⋃
i I

−
i (see the second part of Section 5 for a detailed

discussion). With this is mind, one can interpret Theorem 1.1 as a singular pertur-
bation result from the limit case μ = +∞. Indeed, by taking into account all the
possibilities for the non-negative solutions of the Dirichlet problem associated with
u′′ + λa+(t)g(u) = 0 on each I+i , one finds 3m limit profiles for positive solutions
to (1.2). Among them, 3m − 1 are non-trivial and give rise, for μ � 0, to 3m − 1
positive T -periodic solutions to (1.2), while the trivial limit profile still persists as
the trivial solution to (1.2) for any μ > 0. Figure 1 illustrates an example of exis-
tence of eight positive solutions for the Dirichlet problem when the weight function
possesses two positive humps separated by a negative one.

What may appear as a relevant aspect of our result is the fact that a minimal
set of assumptions on the non-linearity g(s) is required. Indeed, only positivity,
continuity and the hypotheses on the limits g(s)/s for s → 0+ and s → +∞ are
required. In particular, no supplementary power-type growth conditions at zero or
at infinity are needed. In the recent paper [11] we obtained the existence of at least
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Figure 1. The figure shows an example of 8 = 32 − 1 pos-
itive solutions to the Dirichlet problem for the super-sublinear
non-linearity g(s) = s2/(1 + s2). For this simulation we have
chosen the interval [0, T ] with T = 3π and the weight function
aλ,μ(t) := λ sin+(t) − μ sin−(t), so that m = 2 is the number of
positive humps separated by a negative one. Evidence of multi-
ple positive solutions (agreeing with Theorem 7.1) is obtained for
λ = 3 and μ = 10. The subfigures (to be read in the natural order
left-right and top-bottom) show pairs of solutions according to the
following codes: (2, 2) and (1, 1), (2, 1) and (1, 2), (2, 0) and (0, 2),
(1, 0) and (0, 1).

two positive T -periodic solutions under the sharp condition (1.3) on the coefficient
μ; on the other hand, in the same paper some extra (although mild) assumptions
on g(s) were imposed. It is interesting to observe that increasing the value of μ
yields both abundance of solutions and no extra assumptions on g(s).

The possibility of finding multiple positive solutions of indefinite non-linear prob-
lems by playing with the nodal behavior of the weight function was at first sug-
gested in a paper by Gómez-Reñasco and López-Gómez [28], in analogy with the
celebrated papers by Dancer [18, 19] providing multiplicity of solutions to elliptic
BVPs by playing with the shape of the domain. In particular, it was then proved in
[24, 25] that the Dirichlet boundary value problem associated with the superlinear
indefinite equation

u′′ +
(
a+(t)− μa−(t)

)
up = 0, with p > 1,

has 2m−1 positive solutions (with m again being the number of negative humps of
a(t)) when μ is large. This result has later been extended in various directions, so
as to cover also the case of an elliptic PDE (cf. [9,27]), more general non-linearities



796 A. BOSCAGGIN, G. FELTRIN, AND F. ZANOLIN

(cf. [21, 26]) as well as Neumann/periodic boundary conditions (cf. [5, 10, 20, 22]).
The fact that in the superlinear case less solutions, with respect to Theorem 1.1,
are available is not surprising, since in general no more than one positive solution
can be expected for the Dirichlet problem associated with u′′ + a+(t)up = 0 on
the interval I+i (the uniqueness is simple to check at least for a+ ≡ 1). On the
other hand, the parameter λ in front of the positive part of the weight function is
not necessary to ensure existence: indeed, the superlinear growth at infinity plays
here the same role as the largeness of λ in the super-sublinear case. Referring to
Theorem 1.1, we can thus say that the 2m − 1 solutions associated with strings
S with Si ∈ {0, 1} correspond to the solutions already available for superlinear
problems, while all the other ones (that is, Si = 2 for at least an index i) are
typical of super-sublinear non-linearities.

An important feature of Theorem 1.1 is that all the constants appearing in the
statement (precisely λ∗, r, R and μ∗(λ)) can be explicitly estimated (depending on
g(s), a(t), as well as on the arbitrary choice of ρ). In particular, it turns out that,
whenever Theorem 1.1 is applied to an interval of the form [0, kT ], with k ≥ 1 an
integer number, these constants can be chosen independently on k. This implies
that, for any fixed λ > λ∗ and for any μ > μ∗(λ), equation (1.2) has positive
T -periodic solutions as well as positive kT -periodic solutions for any k ≥ 2. Such
solutions can of course be coded similarly as the T -periodic ones, by prescribing
their behavior on the intervals

I+i,� := I+i + 	 T, for i = 1, . . . ,m and 	 ∈ Z,

according to a non-null bi-infinite km-periodic string S in the alphabet A :=
{0, 1, 2} of 3 symbols (see Theorem 6.1). This information can be used to prove that
many of these positive kT -periodic solutions have kT as minimal period, namely
they are subharmonic solutions of order k (see Theorem 6.2, where a lower bound
based on the combinatorial concept of Lyndon words is given). Finally, using an
approximation argument of Krasnosel’skĭı-Mawhin type (cf. [33,39]) for k → ∞, it
is possible to construct globally defined bounded positive solutions to (1.2), whose
behavior on each I+i,� can be prescribed a priori with a non-trivial bi-infinite string

S ∈ A Z and thus exhibiting chaotic-like dynamics (see Theorem 6.4). In this way
we can improve the main result in [13], where arguments from topological horse-
shoes theory were used to construct a symbolic dynamics on two symbols (1 and 2,
according to the notation of the present paper).

For the proof of Theorem 1.1 and its variants, we use a topological degree ap-
proach looking for solutions to an operator equation of the form

(1.5) Lu = Nλ,μu, u ∈ domL,

where L is the differential operator u 
→ −u′′ subject to the boundary conditions
and Nλ,μ is the Nemytskii operator induced by a suitable extension, defined for all
s ∈ R, of aλ,μ(t)g(s). Once we have chosen an appropriate pair of spaces X,Z such
that L : domL (⊆ X) → Z and Nλ,μ : X → Z, we transform equation (1.5) into an
equivalent fixed point problem of the form

u = Φλ,μu, u ∈ X,

with Φλ,μ a completely continuous operator acting onX. In the case of the Dirichlet
problem, the linear operator L is invertible and thus Φλ,μ = L−1Nλ,μ, while for
periodic and Neumann boundary conditions we follow the approach introduced by
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J. Mawhin in [36] for the definition of the coincidence degree. The crucial steps in
the proofs consist in defining some special open and unbounded sets ΛI,J ⊆ X and
in computing degLS(Id−Φλ,μ,Λ

I,J , 0), where “degLS” denotes the Leray-Schauder
degree for locally compact operators (cf. [29,44,45]). In the definition of these open
sets, I and J are prescribed disjoint sets of indices contained in {1, . . . ,m} and
u ∈ ΛI,J provided that u(t) is “very small”, “small” or “large” on the intervals I+i
when i /∈ I ∪J , i ∈ I, or i ∈ J , respectively. Moreover, by construction, 0 /∈ ΛI,J

when I ∪ J �= ∅. For λ > λ∗ and μ > μ∗(λ), we prove that the degree is defined
and

(1.6) degLS(Id− Φλ,μ,Λ
I,J , 0) �= 0.

Condition (1.6) together with a maximum principle argument implies the existence
of a non-negative solution u(t) of (1.2) satisfying the boundary conditions and,
moreover, such that u ∈ ΛI,J . This non-negative solution is either positive or the
trivial one. Considering all the possible choices of pairwise disjoint sets I,J ⊆
{1, . . .m} with I ∪ J �= ∅, we thus obtain the desired 3m − 1 positive solutions.

The plan of the paper is the following. In Section 2 we introduce the functional
analytic setting to deal with the operator equation (1.5). We shall focus our atten-
tion mainly on the case of the periodic boundary value problem (so that the operator
L is not invertible) exploiting the framework and the properties of Mawhin’s coinci-
dence degree. Although coincidence degree theory has already been well developed
in some classical textbooks (see [23, 37, 38]), we recall some main properties for
the reader’s convenience. In particular, due to our choice of considering equation
(1.5) on open and unbounded sets, we present the theory from the slightly more
general point of view of locally compact operators. In Section 3 we define the open
and unbounded sets ΛI,J and describe the general strategy for the proof of the
degree formula (1.6). In more detail, we first introduce some auxiliary open and
unbounded sets ΩI,J and we then present two lemmas (Lemma 3.1 and Lemma 3.2)
for the computation of

(1.7) degLS(Id− Φλ,μ,Ω
I,J , 0).

Obtaining (1.6) from the evaluation of the degrees in (1.7) is justified in the appen-
dix using a purely combinatorial argument. Next, in Section 4 we actually show, by
means of some careful estimates on the solutions of some parameterized equations
related to (1.2), that the above lemmas and the general strategy can be applied
for λ and μ large, thus concluding the proof of Theorem 1.1. In Section 5 we
present some general properties of (not necessarily periodic) positive solutions of
(1.2) defined on the whole real line and we discuss the limit behavior for μ → +∞.
Section 6 is devoted to the study of positive subharmonic solutions and of positive
solutions with a chaotic-like behavior. In a dynamical system perspective, we also
prove the presence of a Bernoulli shift as a factor within the set of positive bounded
solutions of (1.2). The paper ends with Section 7, where we discuss variants and
extensions of Theorem 1.1 and we also present an application to radially symmetric
solutions for some elliptic PDEs.

2. Abstract setting

Dealing with boundary value problems, it is often convenient to choose spaces of
functions defined on compact domains. Therefore, for the T -periodic problem, as
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usual, we shall restrict ourselves to functions u(t) defined on [0, T ] and such that

(2.1) u(0) = u(T ), u′(0) = u′(T ).

In the sequel, solutions of a given second order differential equation satisfying the
boundary condition (2.1) will be referred to as T -periodic solutions.

Let X := C([0, T ]) be the Banach space of continuous functions u : [0, T ] → R,
endowed with the norm

‖u‖∞ := max
t∈[0,T ]

|u(t)|,

and let Z := L1([0, T ]) be the Banach space of integrable functions v : [0, T ] → R,
endowed with the norm

‖v‖L1 :=

∫ T

0

|v(t)| dt.

As is well known, the differential operator

L : u 
→ −u′′,

defined on

domL :=
{
u ∈ W 2,1([0, T ]) : u(0) = u(T ), u′(0) = u′(T )

}
⊆ X,

is a linear Fredholm map of index zero with range

ImL =

{
v ∈ Z :

∫ T

0

v(t) dt = 0

}
.

Moreover, we can define the projectors

P : X → kerL ∼= R, Q : Z → cokerL ∼= Z/ImL ∼= R,

as the average operators

Pu = Qu :=
1

T

∫ T

0

u(t) dt.

Finally, let

KP : ImL → domL ∩ kerP

be the right inverse of L, that is, the operator that to any function v ∈ L1([0, T ])

with
∫ T

0
v(t) dt = 0 associates the unique T -periodic solution u of

u′′ + v(t) = 0, with

∫ T

0

u(t) dt = 0.

Next, we introduce the L1-Carathéodory function

fλ,μ(t, s) :=

{
−s, if s ≤ 0;(
λa+(t)− μa−(t)

)
g(s), if s ≥ 0;

where a : R → R is a locally integrable T -periodic function, g : R+ → R+ is a
continuous function with g(0) = 0 and λ, μ > 0 are fixed parameters. Let us denote
by Nλ,μ : X → Z the Nemytskii operator induced by the function fλ,μ, that is,

(Nλ,μu)(t) := fλ,μ(t, u(t)), t ∈ [0, T ].

By coincidence degree theory, the operator equation

Lu = Nλ,μu, u ∈ domL,
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is equivalent to the fixed point problem

u = Φλ,μu := Pu+QNλ,μu+KP (Id−Q)Nλ,μu, u ∈ X.

Notice that the term QNλ,μu in the above formula should be more correctly written
as JQNλ,μu, where J is a linear (orientation-preserving) isomorphism from cokerL
to kerL. However, in our situation, both cokerL, as well as kerL, can be identified
with R, so that we can take as J the identity on R. It is standard to verify that
Φλ,μ : X → X is a completely continuous operator and thus we say that Nλ,μ is
L-completely continuous.

If O ⊆ X is an open and bounded set such that

Lu �= Nλ,μu, ∀u ∈ ∂O ∩ domL,

the coincidence degree DL(L−Nλ,μ,O) (of L and Nλ,μ in O) is defined as

DL(L−Nλ,μ,O) := degLS(Id− Φλ,μ,O, 0).

In order to introduce the coincidence degree on open (possibly unbounded) sets,
we just follow the standard approach used to define the Leray-Schauder degree for
locally compact maps defined on open sets, which is classical in the theory of fixed
point index (cf. [29, 40, 44, 45]). In more detail, let Ω ⊆ X be an open set and
suppose that the solution set

Fix (Φλ,μ,Ω) :=
{
u ∈ Ω: u = Φλ,μu

}
=

{
u ∈ Ω ∩ domL : Lu = Nλ,μu

}
is compact. Then, the Leray-Schauder degree degLS(Id− Φλ,μ,Ω, 0) is defined as

degLS(Id− Φλ,μ,Ω, 0) := degLS(Id− Φλ,μ,V , 0),
where V is an open bounded set with

(2.2) Fix (Φλ,μ,Ω) ⊆ V ⊆ V ⊆ Ω.

It is possible to check that the definition is independent of the choice of V . Ac-
cordingly, we define the coincidence degree DL(L−Nλ,μ,Ω) (of L and Nλ,μ in Ω)
as

DL(L−Nλ,μ,Ω) := DL(L−Nλ,μ,V) = degLS(Id− Φλ,μ,V , 0),
with V as above. In the special case of an open and bounded set Ω such that

(2.3) Lu �= Nλ,μu, ∀u ∈ ∂Ω ∩ domL,

it is easy to verify that the above definition reduces to the classical one. Indeed, if
(2.3) holds with Ω open and bounded, then, by the excision property of the Leray-
Schauder degree, we have degLS(Id− Φλ,μ,V , 0) = degLS(Id− Φλ,μ,Ω, 0) for each
open bounded set V satisfying (2.2).

Combining the properties of coincidence degree with the theory of fixed point
index for locally compact operators, it is possible to derive the following versions
of the main properties of the degree.

• Additivity. Let Ω1, Ω2 be open and disjoint subsets of Ω such that
Fix (Φλ,μ,Ω) ⊆ Ω1 ∪ Ω2. Then

DL(L−Nλ,μ,Ω) = DL(L−Nλ,μ,Ω1) +DL(L−Nλ,μ,Ω2).

• Excision. Let Ω0 be an open subset of Ω such that Fix (Φλ,μ,Ω) ⊆ Ω0.
Then

DL(L−Nλ,μ,Ω) = DL(L−Nλ,μ,Ω0).
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• Existence theorem. If DL(L−Nλ,μ,Ω) �= 0, then Fix (Φλ,μ,Ω) �= ∅, hence
there exists u ∈ Ω ∩ domL such that Lu = Nλ,μu.

• Homotopic invariance. Let H : [0, 1] × Ω → X, Hϑ(u) := H(ϑ, u), be a
continuous homotopy such that

S :=
⋃

ϑ∈[0,1]

{
u ∈ Ω ∩ domL : Lu = Hϑu

}

is a compact set and there exists an open neighborhood W of S such that
W ⊆ Ω and (KP (Id − Q)H)|[0,1]×W is a compact map. Then the map

ϑ 
→ DL(L−Hϑ,Ω) is constant on [0, 1].

For more details, proofs and applications, we refer to [23,37,38] and the references
therein.

In the sequel we will apply this general setting in the following manner. We con-
sider an L-completely continuous operatorN and an open (not necessarily bounded)
set A such that the solution set {u ∈ A∩domL : Lu = Nu} is compact and disjoint
from ∂A. Therefore DL(L − N ,A) is well defined. We will proceed analogously
when dealing with homotopies.

We notice that, by the existence theorem, if DL(L−Nλ,μ,Ω) �= 0 for some open
set Ω ⊆ X, then equation

(2.4) u′′ + fλ,μ(t, u) = 0

has at least one solution in Ω satisfying the boundary condition (2.1). If we denote
by u(t) such a solution, we have that u(t) can be extended by T -periodicity to a
T -periodic solution of (2.4) defined on the whole real line. Moreover, a standard
application of the maximum principle ensures that u(t) ≥ 0 for all t ∈ R. Finally,
if g(s)/s is bounded in a right neighborhood of s = 0 (a situation which always
occurs if we assume (g0)), then either u ≡ 0 or u(t) > 0 for all t ∈ R.

Remark 2.1. As already observed in the introduction, our main attention is devoted
to the study of the periodic problem for Lu = −u′′, while, for Neumann and
Dirichlet boundary conditions, as well as for other operators, we only underline
which modifications are needed.

If we study the Neumann problem, we just modify the domain of L as

domL :=
{
u ∈ W 2,1([0, T ]) : u′(0) = u′(T ) = 0

}
⊆ X

and all the rest is basically the same with elementary modifications. Obviously, the
right inverse of L now is the operator which associates to any function v ∈ L1([0, T ])

satisfying
∫ T

0
v(t)dt = 0 the unique solution of u′′+v(t) = 0 with u′(0) = u′(T ) = 0

and
∫ T

0
u(t) dt = 0.

In the case of the Dirichlet problem, the domain of L is

domL := W 2,1
0 ([0, T ]) =

{
u ∈ W 2,1([0, T ]) : u(0) = u(T ) = 0

}
⊆ X,

but now the differential operator L is invertible (indeed it can be expressed by
means of the Green’s function), so that Φλ,μ = L−1Nλ,μ. In this situation, coinci-
dence degree theory reduces to the classical Leray-Schauder one for locally compact
operators.

Finally, we observe that the above framework remains substantially unchanged
for other classes of linear differential operators. In the periodic case, exactly the
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same considerations as above are valid if we take the operator

L : u 
→ −u′′ − cu′,

where c ∈ R is an arbitrary but fixed constant (recall that the maximum principle
is still valid in this setting; see [20, §6]). This, in principle, allows us to insert a
dissipation term in equation (1.2) (see Section 7.1 for a more detailed discussion).

Concerning the Neumann and the Dirichlet problems, we can easily deal with
self-adjoint differential operators of the form

L : u 
→ −(p(t)u′)′,

with p(t) > 0 for all t ∈ [0, T ]. We do not insist further on these aspects; however,
we will see later a special example of p(t) which naturally arises in the study of
radially symmetric solutions of elliptic PDEs (see Section 7.3). �

3. Proof of Theorem 1.1: An outline

The proof of Theorem 1.1 and its variants is based on the abstract setting de-
scribed in the previous section but it also requires some careful estimates on the
solutions of (1.2) and of some related equations. In this section we first introduce
some special open sets of the Banach space X where the coincidence degree will be
computed and next we present the main steps which are required for these com-
putations. In this manner we can skip for a moment all the technical estimates
(which are developed in Section 4) and focus ourselves on the general strategy of
the proof.

From now on, all the assumptions on a(t) and g(s) in Theorem 1.1 will be
implicitly assumed.

3.1. General strategy. Let us fix an arbitrary constant ρ > 0. Depending on
ρ, we determine a value λ∗ = λ∗(ρ) > 0 such that, for λ > λ∗, any non-negative
solution to

u′′ + λa+(t)g(u) = 0,

with maxt∈I+
i
u(t) = ρ, must vanish on I+i (whatever the index i = 1 . . . ,m). This

fact is expressed in a more formal way in Lemma 4.1 (where we also consider a
more general equation). From now on, both ρ and λ > λ∗ are fixed.

Next, given any constants r, R with 0 < r < ρ < R and for any pair of subsets
of indices I,J ⊆ {1, . . . ,m} (possibly empty) with I ∩ J = ∅, we define the open
and unbounded set

(3.1) ΩI,J
(r,ρ,R) :=

⎧⎪⎨
⎪⎩u ∈ X :

maxI+
i
|u| < r, i ∈ {1, . . . ,m} \ (I ∪ J )

maxI+
i
|u| < ρ, i ∈ I

maxI+
i
|u| < R, i ∈ J

⎫⎪⎬
⎪⎭ .

Then, in Section 4.2 we determine two specific constants r, R with 0 < r < ρ < R
such that, for any choice of I,J as above, the coincidence degree

DL

(
L−Nλ,μ,Ω

I,J
(r,ρ,R)

)
is defined, provided that μ is sufficiently large (say μ > μ∗(λ, r, R)). Along this
process, in Section 4.3 and Section 4.4 we also prove Theorem 3.1 below.
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Theorem 3.1. In the above setting, it holds that

(3.2) DL

(
L−Nλ,μ,Ω

I,J
(r,ρ,R)

)
=

{
0, if I �= ∅;
1, if I = ∅.

Then, having fixed ρ, λ, r, R, μ as above, we further introduce the open and
unbounded sets

(3.3) ΛI,J
(r,ρ,R) :=

⎧⎪⎨
⎪⎩u ∈ X :

maxI+
i
|u| < r, i ∈ {1, . . . ,m} \ (I ∪ J )

r < maxI+
i
|u| < ρ, i ∈ I

ρ < maxI+
i
|u| < R, i ∈ J

⎫⎪⎬
⎪⎭ .

From Theorem 3.1 and a combinatorial argument (see Appendix A), we can prove
the following.

Theorem 3.2. In the above setting, it holds that

(3.4) DL

(
L−Nλ,μ,Λ

I,J
(r,ρ,R)

)
= (−1)#I .

As a consequence of the existence property for the coincidence degree, we thus
obtain the existence of a T -periodic solution of (2.4) in each of these 3m sets

ΛI,J
(r,ρ,R) (taking into account all the possible cases for I,J ). Notice that Λ∅,∅(r, ρ, R)

contains the trivial solution. In all the other 3m − 1 sets the solution must be non-
trivial and hence, by the maximum principle argument recalled in the previous
section, a positive solution of (1.2). In this manner we can conclude that, for each
choice of I,J with I ∪J �= ∅, there exists at least one positive T -periodic solution
u(t) of (1.2) such that

• 0 < maxt∈I+
i
u(t) < r, for i /∈ I ∪ J ;

• r < maxt∈I+
i
u(t) < ρ, for all i ∈ I;

• ρ < maxt∈I+
i
u(t) < R, for all i ∈ J .

Finally, in order to achieve the conclusion of Theorem 1.1, we just observe that,
given any finite string S = (S1, . . . ,Sm) ∈ {0, 1, 2}m, with S �= (0, . . . , 0), we can
associate to S the sets

I :=
{
i ∈ {1, . . . ,m} : Si = 1

}
, J :=

{
i ∈ {1, . . . ,m} : Si = 2

}
,

so that Si = 0 when i /∈ I ∪ J . This completes the proof of Theorem 1.1. �

3.2. Degree lemmas. For the proof of Theorem 3.1, we need to compute the
topological degrees in formula (3.2). To this end, we will use the following results.

Lemma 3.1. Let I �= ∅ and λ, μ > 0. Assume that there exists v ∈ L1([0, T ]), with
v(t) 
 0 on [0, T ] and v ≡ 0 on

⋃
i I

−
i , such that the following properties hold:

(H1) If α ≥ 0, then any T -periodic solution u(t) of

(3.5) u′′ +
(
λa+(t)− μa−(t)

)
g(u) + αv(t) = 0,

with 0 ≤ u(t) ≤ R for all t ∈ [0, T ], satisfies
• maxt∈I+

i
u(t) �= r, if i /∈ I ∪ J ;

• maxt∈I+
i
u(t) �= ρ, if i ∈ I;

• maxt∈I+
i
u(t) �= R, if i ∈ J .
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(H2) There exists α∗ ≥ 0 such that equation (3.5), with α = α∗, does not possess
any non-negative T -periodic solution u(t) with

u(t) ≤ ρ, ∀ t ∈
⋃
i∈I

I+i .

Then it holds that

DL

(
L−Nλ,μ,Ω

I,J
(r,ρ,R)

)
= 0.

Proof. We adapt to our situation an argument from [11, Lemma 2.1]. We first write
the equation

(3.6) u′′ + fλ,μ(t, u) + αv(t) = 0

as a coincidence equation in the space X

Lu = Nλ,μu+ αv, u ∈ domL,

and we check that the coincidence degree DL

(
L−Nλ,μ−αv,ΩI,J

(r,ρ,R)

)
is well-defined

for any α ≥ 0. To this end, for α ≥ 0, we consider the solution set

Rα :=
{
u ∈ cl

(
ΩI,J

(r,ρ,R)

)
∩ domL : Lu = Nλ,μu+ αv

}
.

We have that u ∈ Rα if and only if u(t) is a T -periodic solution of (3.6) with
|u(t)| ≤ r for all t ∈ I+i if i /∈ I ∪ J , |u(t)| ≤ ρ for all t ∈ I+i if i ∈ I, and
|u(t)| ≤ R for all t ∈ I+i if i ∈ J . By a maximum principle argument, we find
u(t) ≥ 0 for any t. Moreover, taking into account that v(t) 
 0 on [0, T ] and v ≡ 0
on

⋃
i I

−
i , we have that u(t) is concave in each I+i and convex in each I−i . As a

consequence, u(t) ≤ R for any t. Hence, Rα ⊆ B[0, R] := {u ∈ X : ‖u‖∞ ≤ R}
and the complete continuity of Φλ,μ implies that Rα is compact. Furthermore,
condition (H1) guarantees that maxI+

i
u < r if i /∈ I ∪ J , maxI+

i
u < ρ if i ∈ I,

and maxI+
i
u < R if i ∈ J . Thus, Rα ⊆ ΩI,J

(r,ρ,R). In this way we conclude that the

coincidence degree DL

(
L−Nλ,μ − αv,ΩI,J

(r,ρ,R)

)
is well-defined for any α ≥ 0.

Now, using α as the homotopy parameter and using the homotopic invariance
of the degree (with the same argument as above, we can see that

⋃
α∈[0,α∗] Rα is a

compact subset of ΩI,J
(r,ρ,R)), we have that

DL

(
L−Nλ,μ,Ω

I,J
(r,ρ,R)

)
= DL

(
L−Nλ,μ − α∗v,ΩI,J

(r,ρ,R)

)
.

If, by contradiction, this degree is non-null, then there exists at least one T -periodic

solution u ∈ ΩI,J
(r,ρ,R) of (3.6) with α = α∗. Again by the maximum principle, we

then have a non-negative T -periodic solution of (3.5) with α = α∗ and, since

u ∈ ΩI,J
(r,ρ,R) with I �= ∅, it holds that maxI+

i
u ≤ ρ if i ∈ I. This contradicts

assumption (H2) and the proof is completed. �

The next result uses a duality theorem by Mawhin which relates the coincidence
degree with the (finite dimensional) Brouwer degree, denoted here as “degB”. We
recall also the definition of μ#(λ) given in (1.3).
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Lemma 3.2. Let I = ∅, λ > 0 and μ > μ#(λ). Assume the following property:

(H3) If ϑ ∈ ]0, 1], then any T -periodic solution u(t) of

(3.7) u′′ + ϑ
(
λa+(t)− μa−(t)

)
g(u) = 0,

with 0 ≤ u(t) ≤ R for all t ∈ [0, T ], satisfies
• maxt∈I+

i
u(t) �= r, if i /∈ J ;

• maxt∈I+
i
u(t) �= R, if i ∈ J .

Then it holds that

DL

(
L−Nλ,μ,Ω

∅,J
(r,ρ,R)

)
= 1.

Proof. We argue similarly as in [11, Lemma 2.2], using a reduction property for the
coincidence degree from Mawhin’s continuation theorem (see [38, Theorem 2.4] as
well as [36], where the result was previously given in the context of the periodic
problem for ODEs). We consider the parameterized equation

u = Ψϑ(u) := Pu+QNλ,μu+ ϑKP (Id−Q)Nλ,μu, u ∈ X, ϑ ∈ [0, 1].

Let also

S :=
⋃

ϑ∈[0,1]

{
u ∈ cl

(
Ω∅,J

(r,ρ,R)

)
: u = Ψϑ(u)

}
.

Suppose that 0 < ϑ ≤ 1. In this situation, u = Ψϑ(u) if and only if

Lu = ϑNλ,μu, u ∈ domL,

or, equivalently, u(t) is a T -periodic solution of

u′′ + ϑfλ,μ(t, u) = 0.

If u ∈ cl
(
Ω∅,J

(r,ρ,R)

)
, we know that maxI+

i
|u| ≤ r if i /∈ J and maxI+

i
|u| ≤ R if

i ∈ J . Hence, by a maximum principle, u(t) is a non-negative T -periodic solution
of (3.7) and, by a convexity argument, u(t) ≤ R for any t. Moreover, by (H3),
maxI+

i
u < r if i /∈ J and maxI+

i
u < R if i ∈ J .

On the other hand, if ϑ = 0, u is a solution of u = Ψ0(u) if and only if u =
Pu+QNλ,μu, that is, u ∈ kerL and QNλ,μu = 0. Since kerL ∼= R and

QNλ,μu =
1

T

∫ T

0

fλ,μ(t, s) dt, for u ≡ constant = s ∈ R,

we conclude that u ≡ s ∈ R is a solution of u = Ψ0(u) with u ∈ cl
(
Ω∅,J

(r,ρ,R)

)
if and

only if |s| ≤ r if J �= {1, . . . ,m} and |s| ≤ R if J = {1, . . . ,m} and, moreover,

f#
λ,μ(s) = 0, where we have set

f#
λ,μ(s) :=

1

T

∫ T

0

fλ,μ(t, s) dt =

⎧⎨
⎩

−s, if s ≤ 0;(
1

T

∫ T

0

aλ,μ(t) dt

)
g(s), if s ≥ 0.

If μ > μ#(λ), we have that f#
λ,μ satisfies f#

λ,μ(s)s < 0 for s �= 0. Hence u ≡ 0.
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We conclude that the set S is compact and contained in Ω∅,J
(r,ρ,R). By the homo-

topic invariance of the coincidence degree, we have that

DL

(
L−Nλ,μ,Ω

∅,J
(r,ρ,R)

)
= degLS

(
Id−Ψ1,Ω

∅,J
(r,ρ,R), 0

)
= degLS

(
Id−Ψ0,Ω

∅,J
(r,ρ,R), 0

)
= degB

(
−QNλ,μ|kerL,Ω∅,J

(r,ρ,R) ∩ kerL, 0
)

= degB
(
−f#

λ,μ|kerL, ]−d, d[, 0
)
= 1,

where d = r or d = R according to whether J �= {1, . . . ,m} or J = {1, . . . ,m}.
This concludes the proof. �

Remark 3.1. When dealing with other differential operators L or with Neumann
and Dirichlet boundary conditions, some changes are required.

First of all we notice that Lemma 3.1 and Lemma 3.2 hold exactly the same for
the T -periodic problem and the differential operator u 
→ −u′′ − cu′. The same is
true for Neumann boundary conditions: we have only to assume for equation (3.5)
and (3.7) that u(t) is a solution satisfying u′(0) = u′(T ) = 0. For these cases, no
relevant changes are needed in the proofs.

Concerning the Dirichlet problem the following modifications are in order.
First, in all the degree formulas the terms DL(L−Nλ,μ, ·) have to be replaced by
degLS(Id−L−1Nλ,μ, ·, 0). Secondly, in equations (3.5) and (3.7) we have to suppose
that u(t) is a solution satisfying u(0) = u(T ) = 0. Finally, we strongly simplify the
argument in the proof of Lemma 3.2 since, when ϑ = 0, we directly reduce to the
trivial equation u = 0. Therefore the homotopic invariance of the Leray-Schauder
degree (with respect to the parameter ϑ ∈ [0, 1]) yields

DL(L−Nλ,μ,Ω
∅,J
(r,ρ,R)) = degLS(Id,Ω

∅,J
(r,ρ,R), 0) = 1,

because 0 ∈ Ω∅,J
(r,ρ,R). In this case the condition μ > μ#(λ) is not required in

Lemma 3.2. However, the largeness of μ will be in any case needed later in subse-
quent technical estimates. �

4. Proof of Theorem 1.1: The details

In view of the general strategy for the proof described in Section 3, we are going
to prove that the assumptions (H1), (H2) of Lemma 3.1 and (H3) of Lemma 3.2 are
satisfied for suitable choices of r, ρ, R and λ, μ large enough. These proofs are given
in the second part of this section (see Section 4.3 and Section 4.4). Lemma 3.1
and Lemma 3.2 involve the study of the solutions of (3.5) and (3.7), respectively.
These equations, although different, present common features and, for this reason,
we premise some technical estimates on the solutions which will help and simplify
our subsequent proofs.

Keeping in mind that all the assumptions on a(t) and g(s) in Theorem 1.1 are
assumed, we introduce now the following notation. For any constant d > 0, we set

(4.1) ζ(d) := max
d
2≤s≤d

g(s)

s
, γ(d) := min

d
2≤s≤d

g(s)

s
.

Moreover, we also define

g∗(d) := max
0≤s≤d

g(s), g∗(d,D) := min
d≤s≤D

g(s),
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where D > d is another arbitrary constant. Furthermore, recalling (a∗) and the
positions in (1.4), for all i = 1, . . . ,m, we set

‖a‖±,i :=

∫
I±
i

a±(t) dt

and

Ai(t) :=

∫ t

τi

a−(ξ) dξ, t ∈ I−i , ‖Ai‖ :=

∫
I−
i

Ai(t) dt,

Bi(t) :=

∫ σi+1

t

a−(ξ) dξ, t ∈ I−i , ‖Bi‖ :=

∫
I−
i

Bi(t) dt.

Notice that, in general, ‖Ai‖ and ‖Bi‖ may be different.

4.1. Technical estimates. We present now some preliminary technical lemmas.
We stress the fact that all the results in this subsection concern the properties of
solutions of given equations without any reference to the boundary conditions.

Lemma 4.1. For any ρ > 0, there exists λ∗ = λ∗(ρ) > 0 such that, for any λ > λ∗,
α ≥ 0 and i ∈ {1, . . . ,m}, there are no non-negative solutions u(t) to

(4.2) u′′ + λa+(t)g(u) + α = 0,

with u(t) defined for all t ∈ I+i , and such that maxt∈I+
i
u(t) = ρ.

Proof. We fix ε > 0 such that, for each i ∈ {1, . . . ,m}, ε < (τi − σi)/2 and,

moreover,
∫ τi−ε

σi+ε
a+(t) dt > 0. In this manner, the quantity

νε := min
i=1,...,m

∫ τi−ε

σi+ε

a+(t) dt

is well defined and positive.
Let ρ > 0 be fixed and consider α ≥ 0 and i ∈ {1, . . . ,m}. Suppose that u(t) is

a non-negative solution of (4.2) defined on I+i and such that

max
t∈I+

i

u(t) = ρ.

We claim that

|u′(t)| ≤ u(t)

ε
, ∀ t ∈ [σi + ε, τi − ε].

Indeed, if t ∈ [σi + ε, τi − ε] is such that u′(t) = 0, the result is trivially true. If
u′(t) > 0, using the concavity of u(t) on I+i , we have

u(t) ≥ u(t)− u(σi) =

∫ t

σi

u′(ξ) dξ ≥ u′(t)(t− σi) ≥ u′(t)ε.

Analogously, if u′(t) < 0, we have

u(t) ≥ u(t)− u(τi) = −
∫ τi

t

u′(ξ) dξ ≥ −u′(t)(τi − t) ≥ −u′(t)ε.

The claim is thus proved. As a consequence,

(4.3) |u′(t)| ≤ ρ

ε
, ∀ t ∈ [σi + ε, τi − ε].
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On the other hand, the concavity of u(t) on I+i ensures that

(4.4) u(t) ≥ ρ

|I+i |
min{t− σi, τi − t}, ∀ t ∈ I+i .

We introduce now the positive constant

ηε,ρ := min

{
g(s) :

ερ

max
i=1,...,m

|I+i |
≤ s ≤ ρ

}
.

Integrating equation (4.2) on [σi + ε, τi − ε] and using (4.3) and (4.4), we obtain

ληε,ρ

∫ τi−ε

σi+ε

a+(t) dt ≤ λ

∫ τi−ε

σi+ε

a+(t)g(u(t))dt =

∫ τi−ε

σi+ε

(−u′′(t)− α) dt

= u′(σi + ε)− u′(τi − ε)− α (τi − σi − 2ε) ≤ 2ρ

ε
.

Now, we set

λ∗ = λ∗(ρ) :=
2ρ

ενεηε,ρ
.

Arguing by contradiction, from the last inequality we immediately conclude that
there are no non-negative solutions u(t) of (4.2) with maxt∈I+

i
u(t) = ρ, if λ >

λ∗. �

Lemma 4.2. Let λ, μ > 0. Let d > 0 be such that

(4.5) ζ(d) <
1

2λ max
i=1,...,m

(|I+i |+ |I−i |)‖a‖+,i

.

Suppose that u(t) is a non-negative solution of

u′′ + ϑ
(
λa+(t)− μa−(t)

)
g(u) = 0, ϑ ∈ ]0, 1],

defined on I+i ∪ I−i for some i ∈ {1, . . . ,m} and such that

max
t∈I+

i

u(t) = d and u′(σi) ≥ 0.

Then it holds that

u(σi+1) ≥ d

[
1 +

ϑ

2

(
μγ(d)‖Ai‖ − 1

)]
and

u′(σi+1) ≥ ϑd

(
μ
γ(d)

2
‖a‖−,i − λ‖a‖+,iζ(d)

)
.

Proof. The proof is split into two parts. In the first one we provide some estimates
for u(τi) and u′(τi), while in the second part we obtain the desired inequality on
u(σi+1) and u′(σi+1).

Let t̂i ∈ I+i be such that

max
t∈I+

i

u(t) = d = u(t̂i).

Observe that u′(t̂i) = 0, if σi ≤ t̂i < τi (since u
′(σi) ≥ 0), while u′(t̂i) ≥ 0, if t̂i = τi.

As a first instance, suppose that

u′(t̂i) = 0.
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Let [s1, s2] ⊆ I+i be the maximal closed interval containing t̂i and such that u(t) ≥
d/2 for all t ∈ [s1, s2]. We claim that [s1, s2] = I+i . From

u′′(t) = −ϑλa+(t)g(u(t)), t ∈ I+i ,

and

u′(t) = u′(t̂i) +

∫ t

t̂i

u′′(ξ) dξ, ∀ t ∈ I+i ,

it follows that
|u′(t)| ≤ ϑλ‖a‖+,iζ(d)d, ∀ t ∈ [s1, s2].

Then, in view of (4.5),

u(t) = u(t̂i) +

∫ t

t̂i

u′(ξ) dξ ≥ d− ϑλ|I+i |‖a‖+,iζ(d)d >
d

2
, ∀ t ∈ [s1, s2].

This inequality, together with the maximality of [s1, s2], implies that [s1, s2] = I+i .
Hence

(4.6) u′(t) ≥ −ϑλ‖a‖+,iζ(d)d, ∀ t ∈ I+i ,

and, a fortiori,

(4.7) u′(τi) ≥ −ϑλ‖a‖+,iζ(d)d.

Moreover, after an integration of (4.6) on [t̂i, τi], we obtain

(4.8) u(τi) ≥ d
(
1− ϑλ|I+i |‖a‖+,iζ(d)

)
.

On the other hand, if we suppose that t̂i = τi and u′(t̂i) > 0, we immediately have

u(τi) = d ≥ d
(
1− ϑλ|I+i |‖a‖+,iζ(d)

)
and u′(τi) > 0 ≥ −ϑλ‖a‖+,iζ(d)d.

Thus, in any case, (4.7) and (4.8) hold. Having produced some estimates on u(τi)
and u′(τi) we are in position now to proceed with the second part of the proof.

We consider the subsequent (adjacent) interval I−i = [τi, σi+1] where the weight
is non-positive. Since u′(t) is non-decreasing, from (4.7) we get

u′(t) ≥ −ϑλ‖a‖+,iζ(d)d, ∀ t ∈ I−i .

Therefore, integrating on [τi, t] and using (4.8), we have

(4.9)
u(t) = u(τi) +

∫ t

τi

u′(ξ) dξ ≥ d
(
1− ϑλ|I+i |‖a‖+,iζ(d)− ϑλ|I−i |‖a‖+,iζ(d)

)
≥ d

(
1− λ(|I+i |+ |I−i |)‖a‖+,iζ(d)

)
>

d

2
, ∀ t ∈ I−i ,

where the last inequality follows from (4.5). On the other hand, integrating

u′′(t) = ϑμa−(t)g(u(t)), t ∈ I−i ,

on [τi, t] and using (4.7) and (4.9), we find

u′(t) = u′(τi) +

∫ t

τi

ϑμa−(ξ)g(u(ξ))dξ

≥ −ϑλ‖a‖+,iζ(d)d+ ϑ
d

2
μγ(d)Ai(t), ∀ t ∈ I−i .

In particular,

u′(σi+1) ≥ ϑd

(
μ
γ(d)

2
‖a‖−,i − λ‖a‖+,iζ(d)

)
.
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Finally, a further integration and condition (4.5) yield

u(σi+1) = u(τi) +

∫ σi+1

τi

u′(t) dt

≥ d− ϑλ(|I+i |+ |I−i |)‖a‖+,iζ(d)d+ ϑ
d

2
μγ(d)‖Ai‖

≥ d

[
1 + ϑ

(
μ
γ(d)

2
‖Ai‖ − λ(|I+i |+ |I−i |)‖a‖+,iζ(d)

)]

≥ d

[
1 +

ϑ

2

(
μγ(d)‖Ai‖ − 1

)]
.

This concludes the proof. �
Symmetrically, we have the following.

Lemma 4.3. Let λ, μ > 0. Let d > 0 be such that

ζ(d) <
1

2λ max
i=1,...,m

(|I−i−1|+ |I+i |)‖a‖+,i

.

Suppose that u(t) is a non-negative solution of

u′′ + ϑ
(
λa+(t)− μa−(t)

)
g(u) = 0, ϑ ∈ ]0, 1],

defined on I−i−1 ∪ I+i for some i ∈ {1, . . . ,m} and such that

max
t∈I+

i

u(t) = d and u′(τi) ≤ 0.

Then it holds that

u(τi−1) ≥ d

[
1 +

ϑ

2

(
μγ(d)‖Bi−1‖ − 1

)]
and

u′(τi−1) ≤ −ϑd

(
μ
γ(d)

2
‖a‖−,i−1 − λ‖a‖+,iζ(d)

)
.

Remark 4.1. In the sequel, when dealing with the periodic problem, we observe
that the solutions we consider are defined on [0, T ] and satisfy T -periodic boundary
conditions u(T ) − u(0) = u′(T ) − u′(0) = 0. Hence it is convenient to count the
intervals cyclically. Accordingly, in the special case in which i = 1, we apply
Lemma 4.3 with the agreement I−0 = I−m. This makes sense because, if we extend
the solution by T -periodicity on the whole real line, we can consider the interval
I−m − T as adjacent on the left to I+1 . �
Lemma 4.4. Let λ > 0 and 0 < d < D. For any i ∈ {1, . . . ,m} there exists a
constant

μ∗,+
i = μ∗,+

i (I−i , I+i+1) > 0

such that for all μ > μ∗,+
i any non-negative solution u(t) of

u′′ + ϑ
(
λa+(t)− μa−(t)

)
g(u) = 0, ϑ ∈ ]0, 1],

defined on I−i ∪ I+i+1 and such that

‖u‖∞ ≤ D, u(τi) > d and u′(τi) > 0,

satisfies
u(t) > d, u′(t) > 0, ∀ t ∈ I−i ∪ I+i+1.
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Proof. Clearly, by the convexity of u(t) on I−i , we have

u(t) > d, u′(t) > 0, ∀ t ∈ I−i .

Integrating

u′′(t) = ϑμa−(t)g(u(t)) ≥ ϑμa−(t)g∗(d,D), t ∈ I−i ,

on [τi, t] ⊆ I−i we find

u′(t) = u′(τi) +

∫ t

τi

u′′(ξ) dξ > ϑμAi(t)g∗(d,D), ∀ t ∈ I−i ,

so that

u′(σi+1) > ϑμAi(σi+1)g∗(d,D) = ϑμ‖a‖−,i g∗(d,D).

On the other hand, integrating

u′′(t) = −ϑλa+(t)g(u(t)) ≥ −ϑλa+(t)g∗(D), t ∈ I+i+1,

on [σi+1, t] ⊆ I+i+1 we find

u′(t) = u′(σi+1) +

∫ t

σi+1

u′′(ξ) dξ

> ϑ
(
μ‖a‖−,ig∗(d,D)− λ‖a‖+,i+1g

∗(D)
)
> 0, ∀ t ∈ I+i+1,

where the last inequality holds provided that

μ > μ∗,+
i = μ∗,+

i (I−i , I+i+1) :=
λ‖a‖+,i+1g

∗(D)

‖a‖−,ig∗(d,D)
.

Then the solution u(t) is increasing in I+i+1 = [σi+1, τi+1] and hence

u(t) > u(σi+1) > d, ∀ t ∈ I+i+1.

The proof is thus completed. �

Symmetrically, we have the following.

Lemma 4.5. Let λ > 0 and 0 < d < D. For any i ∈ {1, . . . ,m} there exists a
constant

μ∗,−
i = μ∗,−

i (I+i−1, I
−
i−1) > 0

such that for all μ > μ∗,−
i any non-negative solution u(t) of

u′′ + ϑ
(
λa+(t)− μa−(t)

)
g(u) = 0, ϑ ∈ ]0, 1],

defined on I+i−1 ∪ I−i−1 and such that

‖u‖∞ ≤ D, u(σi) > d and u′(σi) < 0,

satisfies

u(t) > d, u′(t) < 0, ∀ t ∈ I+i−1 ∪ I−i−1.

Remark 4.2. Similarly as in Remark 4.1, in order to make the statements of
Lemma 4.4 and Lemma 4.5 meaningful for each possible choice of i ∈ {1, . . . ,m},
when dealing with the periodic problem we shall use the cyclic agreement I−0 = I−m
(as above) and, moreover, I+m+1 = I+1 , I+0 = I+m. �
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4.2. Fixing the constants ρ, λ, r and R. First of all, we arbitrarily choose a
constant ρ > 0. Then, we determine the constant λ∗ = λ∗(ρ) > 0 according to
Lemma 4.1 and we take an arbitrary λ > λ∗. Next, we fix two positive constants
r, R with

0 < r < ρ < R

and such that

(4.10) ζ(s) <
1

2λ max
i=1,...,m

(|I−i−1|+ |I+i |+ |I−i |)‖a‖+,i

, ∀ 0 < s ≤ r, ∀ s ≥ R,

where ζ(s) is defined in (4.1). In the above formula, we use again the cyclic agree-
ment I−0 = I−m. The existence of r and R with the above property is guaranteed
by the fact that g(s)/s → 0+ for s → 0+ and for s → +∞, namely conditions (g0)
and (g∞).

With this choice of r, ρ and R, we consider the sets ΩI,J
(r,ρ,R) defined in (3.1). We

are ready now to prove Theorem 3.1, by checking that Lemma 3.1 and Lemma 3.2
can be applied for μ > 0 sufficiently large (say μ > μ∗(λ, r, R)).

In the proofs of the next two subsections we deal with solutions satisfying T -
periodic boundary conditions. Accordingly, we apply Lemma 4.2, Lemma 4.3,
Lemma 4.4 and Lemma 4.5 with the cyclic convention about the labelling of the
intervals described in Remark 4.1 and Remark 4.2.

4.3. Checking the assumptions of Lemma 3.1 for μ large. In this section we
are going to prove the first part of Theorem 3.1, that is,

(4.11) DL

(
L−Nλ,μ,Ω

I,J
(r,ρ,R)

)
= 0, if I �= ∅.

As usual, we implicitly suppose that I,J ⊆ {1, . . . ,m} with I ∩ J = ∅.
Given I,J as above, with I �= ∅, it is sufficient to check that the assumptions

of Lemma 3.1 are satisfied, taking as v(t) the indicator function of the set
⋃

i∈I I+i ,
that is,

v(t) =

{
1, if t ∈

⋃
i∈I I+i ;

0, if t ∈ [0, T ] \
⋃

i∈I I+i .

Verification of (H1). Let α ≥ 0. By contradiction, suppose that there exists a
non-negative T -periodic solution u(t) of (3.5) with ‖u‖∞ ≤ R such that at least
one of the following conditions holds:

(a1) there is an index i /∈ I ∪ J such that maxt∈I+
i
u(t) = r;

(a2) there is an index i ∈ I such that maxt∈I+
i
u(t) = ρ;

(a3) there is an index i ∈ J such that maxt∈I+
i
u(t) = R.

Suppose that (a1) holds. On the interval I+i ∪I−i (with i /∈ I ∪J ) equation (3.5)
reads as

u′′ +
(
λa+(t)− μa−(t)

)
g(u) = 0.

Consider at first the case u′(σi) ≥ 0. By Lemma 4.2 (with ϑ = 1 and d = r), we
have that

u(σi+1) ≥ r

(
1 + μ

γ(r)

2
‖Ai‖ −

1

2

)
≥ μ r

γ(r)

2
‖Ai‖.
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Thus, taking

(4.12) μ > μ̂right
i :=

2R

rγ(r)‖Ai‖
,

we obtain

u(σi+1) > R,

a contradiction. On the other hand, if u′(σi) < 0, by the concavity of u(t) in I+i
we have that u′(τi) < 0. In this case we reach the contradiction

u(τi−1) > R

using Lemma 4.3 (with ϑ = 1 and d = r) and taking

(4.13) μ > μ̂left
i :=

2R

rγ(r)‖Bi−1‖
.

Suppose that (a2) holds. This fact contradicts Lemma 4.1 in view of our choice
of λ > λ∗. In this case no assumption on μ > 0 is needed.

Finally, if (a3) holds, we obtain again a contradiction arguing as in case (a1)
and using Lemma 4.2 (with ϑ = 1 and d = R). Indeed, u′(σi) cannot be negative,
otherwise u(σi) = R and we get a contradiction with maxt∈I+

i
u(t) = R = ‖u‖∞.

Hence, only the instance u′(σi) ≥ 0 may occur and we have a contradiction for

(4.14) μ > μ̌i :=
1

γ(R)‖Ai‖
.

We conclude that (H1) holds true for

μ > μ(H1) := max
i=1,...,m

{
μ̂right
i , μ̂left

i , μ̌i

}
.

Verification of (H2). Let u(t) be an arbitrary non-negative T -periodic solution of
(3.5) (with α ≥ 0) such that u(t) ≤ ρ for every t ∈

⋃
i∈I I+i .

We fix an index j ∈ I and observe that on the interval I+j equation (3.5) reads
as

u′′ + λa+(t)g(u) + α = 0.

Now, we choose a constant ε ∈ ]0, (τj − σj)/2[ and we notice that the inequality

|u′(t)| ≤ |u(t)|
ε

, ∀ t ∈ [σj + ε, τj − ε],

used in the proof of Lemma 4.1 is still valid. Integrating the differential equation
on [σj + ε, τj − ε] and using the above inequality, we obtain

α (τi − σi − 2ε) = u′(σi + ε)− u′(τi − ε)− λ

∫ τi−ε

σi+ε

a+(t)g(u(t))dt ≤ 2ρ

ε
.

This yields a contradiction if α > 0 is sufficiently large. Hence (H2) is verified (with
α∗ > 2ρ/ε(τi−σi− 2ε)). Notice that for the validity of (H2) we do not impose any
condition on μ > 0.

Summing up, we can apply Lemma 3.1 for μ > μ(H1) and therefore formula
(4.11) is verified. �
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4.4. Checking the assumptions of Lemma 3.2 for μ large. In this section we
are going to prove the second part of Theorem 3.1, that is,

(4.15) DL

(
L−Nλ,μ,Ω

∅,J
(r,ρ,R)

)
= 1,

where J ⊆ {1, . . . ,m}.
Given an arbitrary J ⊆ {1, . . . ,m}, it is sufficient to check that the assumption

of Lemma 3.2 is satisfied.

Verification of (H3). Let ϑ ∈ ]0, 1]. By contradiction, suppose that there exists
a non-negative T -periodic solution u(t) of (3.7) with ‖u‖∞ ≤ R such that at least
one of the following conditions holds:

(b1) there is an index i /∈ J such that maxt∈I+
i
u(t) = r;

(b2) there is an index i ∈ J such that maxt∈I+
i
u(t) = R.

Suppose that (b1) holds. Consider at first the case u′(σi) ≥ 0. Applying
Lemma 4.2 (with d = r), we obtain

u(σi+1) ≥ r

[
1 +

ϑ

2

(
μγ(r)‖Ai‖ − 1

)]
and

u′(σi+1) ≥ ϑr

(
μ
γ(r)

2
‖a‖−,i − λ‖a‖+,iζ(r)

)
.

Notice that if

(4.16) μ > μ̂right
i ,

with μ̂right
i defined in (4.12), then μ > 1/(γ(r)‖Ai‖), and hence u(σi+1) > r (as

ϑ > 0).
On the interval I+i+1 equation (3.7) yields

u′′(t) = −ϑλa+(t)g(u(t)) ≥ −ϑλa+(t)g∗(R).

Then, integrating on [σi+1, t] ⊆ I+i+1 and using the above lower estimate on u′(σi+1),
we obtain

u′(t) = u′(σi+1) +

∫ t

σi+1

u′′(ξ) dξ ≥ u′(σi+1)− ϑλ‖a‖+,i+1g
∗(R)

≥ ϑr

(
μ
γ(r)

2
‖a‖−,i − λ‖a‖+,iζ(r)− λ‖a‖+,i+1

g∗(R)

r

)
, ∀ t ∈ I+i+1.

Taking μ sufficiently large, precisely

(4.17) μ > μ̃right
i :=

2λ
(
‖a‖+,irζ(r) + ‖a‖+,i+1g

∗(R)
)

γ(r)r‖a‖−,i
,

we obtain that

u′(t) > 0, ∀ t ∈ I+i+1.

Consequently

u(t) = u(σi+1) +

∫ t

σi+1

u′(ξ) dξ ≥ u(σi+1) > r, ∀ t ∈ I+i+1.

We conclude that for

μ > max
{
μ̂right
i , μ̃right

i

}
,
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we have that

u(t) > r, u′(t) > 0, ∀ t ∈ I+i+1,

and, in particular,

u(τi+1) > r and u′(τi+1) > 0.

Now we can apply Lemma 4.4 (with d = r and D = R) on the interval I−i+1 ∪ I+i+2,
which ensures that

u(t) > r, u′(t) > 0, ∀ t ∈ I−i+1 ∪ I+i+2,

provided that

(4.18) μ > μ∗,+
i+1 = μ∗,+(I−i+1, I

+
i+2) =

λ‖a‖+,i+2g
∗(R)

‖a‖−,i+1g∗(r, R)
.

Repeating inductively the same argument m − 1 times we cover a T -periodicity
interval with intervals (of the form I−j ∪ I+j+1) where the function u(t) is strictly
increasing, provided that μ is sufficiently large. More precisely, for

μ > max
i=1,...,m

μ∗,+
i

it holds that

u(t) > r, u′(t) > 0, ∀ t ∈ [0, T ].

This clearly contradicts the T -periodicity of u(t).
Consider now the case u′(σi) < 0, which implies (by the concavity of u(t) in

I+i ) that u′(τi) < 0. The same proof as above leads to a contradiction, proceeding
backward and using at first Lemma 4.3 (with d = r) and then Lemma 4.5 (with
d = r and D = R), inductively. Conditions (4.16), (4.17) and (4.18) will be replaced
by the analogous inequalities

μ > μ̂left
i ,

with μ̂left
i defined in (4.13),

μ > μ̃left
i :=

2λ
(
‖a‖+,irζ(r) + ‖a‖+,i−1g

∗(R)
)

γ(r)r‖a‖−,i−1
,

and

μ > μ∗,−
i−1 = μ∗,−(I+i−2, I

−
i−2) =

λ‖a‖+,i−2g
∗(R)

‖a‖−,i−2g∗(r, R)
,

respectively. Thus a contradiction comes for

μ > max
i=1,...,m

μ∗,−
i ,

by showing that u′(t) < 0 for all t ∈ [0, T ].
Taking into account all the possible situations we conclude that the case (b1)

never occurs if

μ > μ
(H3)
1 := max

i=1,...,m

{
μ̂right
i , μ̂left

i , μ̃right
i , μ̃left

i , μ∗,+
i , μ∗,−

i

}
.

To conclude the proof, suppose now that (b2) holds. As observed in the previous
proof, the fact that maxt∈I+

i
u(t) = R = ‖u‖∞ prevents the possibility that u′(σi) <

0. Hence only the instance u′(σi) ≥ 0 may occur. Applying Lemma 4.2 (with
d = R), we obtain

u(σi+1) ≥ R

[
1 +

ϑ

2

(
μγ(R)‖Ai‖ − 1

)]
.
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Hence, if

μ > μ̌i =
1

γ(R)‖Ai‖
(already defined in (4.14)) we get u(σi+1) > R and thus a contradiction with
‖u‖∞ ≤ R. We conclude that the case (b2) never occurs if

μ > μ
(H3)
2 := max

i=1,...,m
μ̌i.

Summing up, we can apply Lemma 3.2 for

μ > μ(H3) := max
{
μ
(H3)
1 , μ

(H3)
2 , μ#(λ)

}
and therefore formula (4.15) is verified. �

4.5. Completing the proof of Theorem 1.1. With reference to Section 3 we
summarize what we have proved until now and we give the final details of the proof
of our main theorem.

First, we have fixed an arbitrary constant ρ > 0 and determined a constant
λ∗ = λ∗(ρ) > 0 via Lemma 4.1. We stress the fact that λ∗ depends only on g(s)
for s ∈ [0, ρ] and on the behavior of a(t) in each of the intervals I+i .

Next, for λ > λ∗, we have found two constants (a small one r and a large one
R) with 0 < r < ρ < R such that condition (4.10) holds. To choose r and R we
only require conditions on the smallness of g(s)/s for s near zero and near infinity,
which is an obvious consequence of (g0) and (g∞). We notice also that condition
(4.10) depends on the behavior of a(t) in each of the intervals I+i as well as on the
lengths of pairs of consecutive intervals.

As a further step, we have shown that both Lemma 3.1 and Lemma 3.2 can be
applied provided that

μ > μ∗(λ) = μ∗(λ, r, R) := max
{
μ(H1), μ(H3)

}
.

Checking carefully the estimates leading to μ(H1) and μ(H3) one realizes that again
only local conditions about the behavior of a(t) on the intervals I±i are involved.

As a consequence, for all μ > μ∗(λ), formula (3.2) in Theorem 3.1 holds. From
this latter result, via a purely combinatorial argument (independent on the particu-
lar equation under consideration), we achieve formula (3.4) in Theorem 3.2 and the
existence of 3m − 1 positive T -periodic solutions to (1.2) is guaranteed, as already
explained at the end of Section 3.1. �

5. General properties for globally defined solutions

and some a posteriori bounds

In this section we focus our attention on non-negative solutions of (1.2) which
are defined for all t ∈ R. On one hand, we show how some computations in the
proofs of the technical lemmas in Section 4 are still valid in this setting; this will
be useful in view of further applications of Theorem 1.1 described in Section 6.
On the other hand, we provide some additional information for the solutions when
μ → +∞.

In order to avoid repetitions, throughout this section we assume that the con-
stants ρ > 0, λ > λ∗, 0 < r < ρ < R and μ > μ∗(λ) are all fixed as in Section 4.2
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and Section 4.5. We stress the fact that even if these constants have been deter-
mined with respect to the T -periodic problem, all the results below are valid for
arbitrary globally defined non-negative solutions.

The first result concerns the behavior of the solutions with respect to the constant
R.

Proposition 5.1. Let g : R+ → R+ be a continuous function satisfying (g∗), (g0)
and (g∞). Let a : R → R be a T -periodic locally integrable function satisfying (a∗).
If w(t) is any non-negative solution of (1.2) with supt∈R w(t) ≤ R, then w(t) < R
for all t ∈ R.

Proof. Suppose by contradiction that there exists a point t∗ ∈ R such that w(t∗) =
maxt∈R w(t) = R. Let also 	 ∈ Z be such that t∗ ∈ [	T, (	+1)T ]. In this case, thanks
to the T -periodicity of the weight coefficient aλ,μ(t), the function u(t) := w(t+ 	T )
is still a (non-negative) solution of (1.2) with maxt∈[0,T ] u(t) = u(t∗−	T ) = w(t∗) =
R. From now on, the proof uses exactly the same argument as for the discussion
of the case (a3) in the verification of (H1) in Section 4.3 (for α = 0) and the same
contradiction can be achieved. �

A straightforward application of Lemma 4.1 gives the following result (the obvi-
ous proof is omitted).

Proposition 5.2. Let g : R+ → R+ be a continuous function satisfying (g∗), (g0)
and (g∞). Let a : R → R be a T -periodic locally integrable function satisfying (a∗).
If w(t) is any non-negative solution of (1.2) and I+i,� := I+i + 	T is any interval of

the real line where a(t) 
 0, then maxt∈I+
i,�

w(t) �= ρ.

The next result concerns the behavior of the solutions with respect to the con-
stant r.

Proposition 5.3. Let g : R+ → R+ be a continuous function satisfying (g∗), (g0)
and (g∞). Let a : R → R be a T -periodic locally integrable function satisfying (a∗).
If w(t) is any non-negative solution of (1.2) with supt∈R w(t) ≤ R and I+i,� :=

I+i + 	T is any interval of the real line where a(t) 
 0, then maxt∈I+
i,�

w(t) �= r.

Proof. We follow the same scheme as for Proposition 5.1. Suppose by contradiction
that there exists t∗ ∈ I+i,� such that w(t∗) = maxt∈I+

i,�
w(t) = r. The function

u(t) := w(t+	T ) is a non-negative solution of (1.2) with maxt∈I+
i
u(t) = w(t∗) = r.

From now on, the proof uses exactly the same argument as for the discussion of
the case (a1) in the verification of (H1) in Section 4.3 (for α = 0) and the same
contradiction can be achieved, in the sense that we find a point where w(t) > R. �

We now focus on some properties of globally defined non-negative solutions of
(1.2) when μ → +∞. The first result in this direction concerns the behavior on
the intervals where a(t) 
 0: roughly speaking, any “very small” solution becomes
arbitrarily small as μ → +∞.

Proposition 5.4. Let g : R+ → R+ be a continuous function satisfying (g∗), (g0)
and (g∞). Let a : R → R be a T -periodic locally integrable function satisfying (a∗).
Then for every ε with 0 < ε ≤ r there exists μ�

ε ≥ μ∗(λ) such that for any fixed
μ > μ�

ε the following holds: if w(t) is any non-negative solution of (1.2) with
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supt∈R w(t) ≤ R and maxt∈I+
i,�

w(t) ≤ r, where I+i,� := I+i + 	T is any interval of

the real line where a(t) 
 0, then maxt∈I+
i,�

w(t) < ε.

Proof. Repeating the same approach as in the proof of the previous propositions
and using the T -periodicity of the weight, without loss of generality, we can restrict
ourselves to the analysis of the non-negative solution w(t) on an interval I+i , for
i = 1, . . . ,m.

The proof uses exactly the same argument as for the discussion of the case
(a1) in the verification of (H1) in Section 4.3 (for α = 0). Let ε ∈ ]0, r]. By
contradiction, suppose that there exists a non-negative solution w(t) of (1.2) such
that supt∈R w(t) ≤ R and maxt∈I+

i
w(t) = ε0 ∈ [ε, r]. Consider at first the case

w′(σi) ≥ 0. Recalling condition (4.10), by Lemma 4.2 (with ϑ = 1 and d = ε0), we
have that

w(σi+1) ≥ μ ε0
γ(ε0)

2
‖Ai‖.

Observing that

γ(ε0) = min
ε0
2 ≤s≤ε0

g(s)

s
≥ min

ε
2≤s≤r

g(s)

s
=: γ∗(ε, r) > 0

and thus taking

μ > μ�,+
i (ε) :=

2R

εγ∗(ε, r)‖Ai‖
,

we obtain w(σi+1) > R, a contradiction. On the other hand, if w′(σi) < 0, by
the concavity of w(t) in I+i we have that w′(τi) < 0. In this case we reach the
contradiction w(τi−1) > R using Lemma 4.3 (with ϑ = 1 and d = ε0) and taking

μ > μ�,−
i (ε) :=

2R

εγ∗(ε, r)‖Bi−1‖
(if i = 1, we count cyclically and consider the interval I−0 as I+m). In conclusion,
taking

μ > μ�
ε := max

i=1,...,m

{
μ�,+
i (ε), μ�,−

i (ε), μ∗(λ)},

the proposition follows. �
Our final result in this section concerns the behavior of non-negative solutions

to (1.2) on the intervals where a(t) ≺ 0. With reference to condition (a∗), for
technical reasons we further suppose that a(t) �≡ 0 in each right neighborhood of τi
and in each left neighborhood of σi+1. Such an assumption does not require any new
constraint on the weight function, but just a more careful selection of the points
τi and σi+1. What we mean is that for a weight function a(t) satisfying (a∗) the
way to select the intervals I+i and I−i may be not univocal. Indeed, we could have
an interval J where a(t) ≡ 0 between an interval of positivity and an interval of
negativity for the weight. Up to now the decision whether to incorporate such an
interval J as a part of I+i or I−i was completely arbitrary. On the contrary, for the
next result, we prefer to consider an interval as J as a part of I+i . In any case, we
can allow a closed interval where a(t) ≡ 0 to lie in the interior of one of the I−i .
With this in mind, we can now present our next result.

Proposition 5.5. Let g : R+ → R+ be a continuous function satisfying (g∗), (g0)
and (g∞). Let a : R → R be a T -periodic locally integrable function satisfying (a∗).
Then for every ε with 0 < ε ≤ r there exists μ��

ε ≥ μ∗(λ) such that for any fixed
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μ > μ��
ε the following holds: if w(t) is any non-negative solution of (1.2) with

supt∈R w(t) ≤ R and I−i,� := I−i + 	T is any interval of the real line where a(t) ≺ 0,

then maxt∈I−
i,�

w(t) < ε.

Proof. Without loss of generality, we can restrict ourselves to the analysis of the
non-negative solution w(t) on an interval I−i , for i = 1, . . . ,m.

Given ε ∈ ]0, r], we consider the values of the solution w(t) at the boundary of
the interval I−i , for an arbitrary but fixed index i ∈ {1, . . . ,m}. If w(τi) < ε and
w(σi+i) < ε, then, by convexity, w(t) < ε for all t ∈ I−i and we have nothing to
prove. Therefore, we discuss only the cases when w(τi) ≥ ε or w(σi+1) ≥ ε. We are
going to show that this cannot occur if μ is sufficiently large. Accordingly, suppose
that w(τi) ≥ ε. Knowing that w(t) ≤ R on the whole real line, in particular in the
interval I+i , we easily find that there is at least a point t0 ∈ I+i such that |w′(t0)| ≤
R/|I+i |. On the other hand, equation (1.2) on I+i reads as w′′ = −λa+(t)g(w), so
that an integration on [t0, τi] yields

w′(τi) = w′(t0)− λ

∫ τi

t0

a+(t)g(w(t))dt ≥ − R

|I+i |
− λ‖a‖+,ig

∗(R) =: −κi,

where the constants ‖a‖+,i and g∗(R) are those defined at the beginning of Sec-
tion 4. The convexity of w(t) in I−i guarantees that w′(t) ≥ −κi for all t ∈ I−i .
Hence, if we fix a constant δi > 0 with τi + δi < σi+1 and such that δi < ε/(2κi),
it is clear that w(t) ≥ ε/2 for all t ∈ [τi, τi + δi]. On the interval I−i equation (1.2)
reads as w′′ = μa−(t)g(w), so that an integration on [τi, t] ⊆ [τi, τi + δi] yields

w′(t) = w′(τi) + μ

∫ t

τi

a−(ξ)g(w(ξ))dξ ≥ −κi + μAi(t) g∗(ε/2, R),

where the function Ai(t) and the constant g∗(ε/2, R) are defined at the beginning
of Section 4. Since we have supposed that a−(t) is not identically zero in each right
neighborhood of τi, we know that the function Ai(t) is strictly positive for each
t ∈ ]τi, σi+1]. Then, integrating the above inequality on [τi, τi + δi], we obtain

w(τi + δi) = w(τi) +

∫ τi+δi

τi

w′(t) dt ≥ ε− κiδi + μ g∗(ε/2, R)

∫ τi+δi

τi

Ai(t) dt.

This latter inequality implies w(τi + δi) > R (and hence a contradiction) for

μ > μleft
i (ε) :=

R+ κiδi

g∗(ε/2, R)
∫ τi+δi
τi

Ai(t) dt
.

On the other hand, if we suppose that w(σi+1) ≥ ε, then by the same argument we
have

w′(σi+1) ≤ κi+i :=
R

|I+i+1|
+ λ‖a‖+,i+1g

∗(R)

(if i = m, we count cyclically and consider the interval I+m+1 as I+1 ). As before, we
fix a constant δi+1 > 0 with σi+1 − δi+1 > τi and such that δi+1 < ε/(2κi+1), so
that u(t) ≥ ε/2 for all t ∈ [σi+1 − δi+1, σi+1]. An integration of the equation on
[t, σi+1] yields

w′(t) ≤ κi+1 − μBi(t) g∗(ε/2, R).

Since we have supposed that a−(t) is not identically zero in each left neighborhood
of σi+1, we know that the function Bi(t) is strictly positive for each t ∈ [τi, σi+1[.
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Then, integrating the above inequality on [σi+1 − δi+1, σi+1], we obtain

w(σi+1 − δi+1) ≥ ε− κi+1δi+1 + μg∗(ε/2, R)

∫ σi+1

σi+1−δi+1

Bi(t) dt.

This latter inequality implies w(σi+1 − δi+1) > R (and hence a contradiction) for

μ > μright
i (ε) :=

R+ κi+1δi+1

g∗(ε/2, R)
∫ σi+1

σi+1−δi+1
Bi(t) dt

.

In conclusion, for

(5.1) μ > μ��
ε := max

i=1,...,m

{
μleft
i (ε), μright

i (ε), μ∗(λ)
}

our result is proved. �

We conclude this section by briefly describing, as typical in singular perturbation
problems, the limit behavior of positive solutions of (1.2) for μ → +∞ (compare
with [5], where a similar discussion was performed in the superlinear case). We
focus our attention on the solutions found in Theorem 1.1 for the T -periodic prob-
lem; however, similar considerations are valid for Dirichlet and Neumann boundary
conditions, as well as for globally defined positive solutions.

Let us fix a non-null string S ∈ {0, 1, 2}m. Theorem 1.1 ensures the existence
(in general, not the uniqueness) of a positive T -periodic solution of (1.2) associated
with it, if λ > λ∗ and μ > μ∗(λ); in order to emphasize its dependence on the
parameter μ, we will denote it by uμ(t). Then, as a direct consequence of Proposi-
tion 5.4 and Proposition 5.5, we have that uμ(t) converges uniformly to zero both
in the intervals I+i with Si = 0 as well as in the intervals I−i , for μ → +∞. As
for the behavior of uμ(t) on the intervals I+i such that Si ∈ {1, 2}, with a standard
compactness argument (based on the facts that 0 ≤ uμ(t) ≤ R and that equation

(1.2) is independent on the parameter μ in the intervals I+i ), we can prove that the
family {uμ|I+

i
}μ>μ∗(λ) is relatively compact in C(I+i ) and that each of its cluster

points u∞(t) has to be a non-negative solution of u′′ + λa+(t)g(u) = 0 on I+i . We
claim that u∞(t) is actually a positive solution, satisfies Dirichlet boundary condi-
tion on I+i and is “small” if Si = 1 and “large” if Si = 2. Indeed, the first assertion
follows from the fact that, passing to the limit, r ≤ maxt∈I+

i
u∞(t) ≤ ρ if Si = 1

and ρ ≤ maxt∈I+
i
u∞(t) ≤ R if Si = 2. As for Dirichlet boundary condition on I+i ,

this is a consequence of uμ(t) → 0 on every interval of negativity. Finally, using
Lemma 4.1, we infer r ≤ maxt∈I+

i
u∞(t) < ρ if Si = 1 (that is, u∞(t) is “small”)

and ρ < maxt∈I+
i
u∞(t) ≤ R if Si = 2 (that is, u∞(t) is “large”).

In conclusion, up to subsequences, uμ(t) → u∞(t) uniformly for μ → +∞, with
u∞(t) a function made up of “null”, “small” and “large” solutions of Dirichlet
problems in the intervals I+i (depending on Si = 0, 1, 2 respectively) connected by
null functions in I−i . See Figure 2 for a numerical simulation. Notice that this
discussion is simplified whenever we are able to prove that each Dirichlet problem
associated with u′′ + λa+(t)g(u) = 0 on I+i has exactly two positive solutions;
indeed, in this case every string S ∈ {0, 1, 2}m uniquely determines a limit profile
u∞(t) and uμ(t) → u∞(t) uniformly, without the need of taking subsequences (even
if uμ(t) could be not unique in the class of positive solutions to (1.2) associated
with S).
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Figure 2. The lower part of the figure shows a positive solu-
tion of equation (1.2) for the super-sublinear non-linearity g(s) =
arctan(s3), for s ≥ 0, and Dirichlet boundary conditions. For this
simulation we have chosen the interval [0, T ] with T = 3 and the
weight function aλ,μ(t) with a(t) having a stepwise graph as repre-
sented in the upper part of the figure. First, with a dashed line we
have drawn the Dirichlet solutions (“small” and “large”) on the
intervals [0, 1] and [2, 3]. Then, for λ = 20 and μ = 10000, we
have exhibited a solution of the form “small” in the first interval
of positivity [0, 1] and “large” in the second interval of positivity
[2, 3]. Such a solution is very close to the limit profile for the class
of solutions associated with the string (1, 2), which is made by a
“small” solution of the Dirichlet problem in [0, 1] and a “large”
solution of the Dirichlet problem in [2, 3] connected by the null so-
lution in [1, 2]. Notice that, for the given weight function which is
identically zero on the interval [2, 2.5] separating the negative and
the positive hump, the solution is very small (and the limit profile
is zero) only in the interval [1, 2] where the weight is negative. This
is in complete accordance with Proposition 5.5 and the choice of
the endpoints of the intervals I±i .

6. Subharmonics and symbolic dynamics

As remarked in Section 4.5, the estimates which allow us to determine the value
λ∗, r, R and μ∗(λ) are of local nature. We exploit this fact by applying Theorem 1.1
on intervals of the form [0, kT ], with k ≥ 2 an integer, and thus proving the existence
of subharmonic solutions. Next, letting k → ∞ and using a Krasnosel’skĭı-Mawhin
lemma for bounded solutions, we obtain positive bounded solutions which are not
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necessarily periodic and can reproduce an arbitrary coin-tossing sequence. This is
a hint of complex dynamics and indeed we conclude the section by describing some
dynamical consequences of our results.

Throughout the section we suppose that g : R+ → R+ is a continuous function
satisfying (g∗) as well as (g0) and (g∞) and a : R → R is a T -periodic locally
integrable function satisfying (a∗). For convenience in the next discussion, we also
suppose that T > 0 is the minimal period of a(t). Moreover, we recall the notation

(6.1) I±i,� := I±i + 	 T, for i = 1, . . . ,m and 	 ∈ Z.

6.1. Positive subharmonic solutions. In this subsection we investigate the ex-
istence and multiplicity of positive subharmonic solutions to equation (1.2). Let
k ≥ 2 be a fixed integer. Following a standard definition, we recall that a sub-
harmonic solution of order k is a kT -periodic solution which is not lT -periodic for
any integer l = 1, . . . , k − 1. As observed in [22] (as a consequence of (g∗) and the
fact that T > 0 is the minimal period of a(t)) any positive subharmonic solution of
order k has actually kT as minimal period.

As a further remark, we observe that if u(t) is a positive kT -periodic solution
of (1.2), then, for any integer 	 with 1 ≤ 	 ≤ k − 1, also its time-translated
v�(t) := u(t + 	T ) is a positive kT -periodic solution of the same minimal period.
Therefore, if we find a subharmonic solution of order k, we also obtain altogether
a family of k subharmonic solutions of the same order. These solutions, even if
formally distinct, will be considered as belonging to the same periodicity class.

We split the search of subharmonic solutions to (1.2) into two steps. In the
first one we present a theorem of existence and multiplicity of positive kT -periodic
solutions which is a direct application of Theorem 1.1 for the interval [0, kT ]. As
a second step, we show how the code “very small/small/large” allows us to prove
the minimality of the period for some of such kT -periodic solutions and determine
a lower bound for the number of k-th order subharmonics.

First of all, in order to apply Theorem 1.1 to the interval [0, kT ], we need to
observe that now a(t) is treated as a kT -periodic function (even if it has T as
minimal period). Recalling the notation in (6.1), in the “new” periodicity interval
[0, kT ] the weight a(t) turns out to be a function with km positive humps I+i,�
separated by km negative ones I−i,� (for i = 1, . . . ,m and 	 = 0, . . . , k − 1).

In this setting, Theorem 1.1 reads as follows.

Theorem 6.1. Let g : R+ → R+ be a continuous function satisfying (g∗), (g0) and
(g∞). Let a : R → R be a locally integrable periodic function of minimal period
T > 0 satisfying (a∗). Then there exists λ∗ > 0 such that for each λ > λ∗ there
exists μ∗(λ) > 0 such that, for each μ > μ∗(λ) and each integer k ≥ 2, equation
(1.2) has at least 3km − 1 positive kT -periodic solutions.

More precisely, fixed an arbitrary constant ρ > 0 there exists λ∗ = λ∗(ρ) > 0
such that for each λ > λ∗ there exist two constants r, R with 0 < r < ρ < R and
μ∗(λ) = μ∗(λ, r, R) > 0 such that, for any μ > μ∗(λ) and for any integer k ≥ 2,
the following holds: given any finite string S = (S1, . . . ,Skm) ∈ {0, 1, 2}km, with
S �= (0, . . . , 0), there exists a positive kT -periodic solution u(t) of (1.2) such that

• maxt∈I+
i,�

u(t) < r, if Sj = 0 for j = i+ 	m;

• r < maxt∈I+
i,�

u(t) < ρ, if Sj = 1 for j = i+ 	m;

• ρ < maxt∈I+
i,�

u(t) < R, if Sj = 2 for j = i+ 	m.
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Proof. This statement follows from Theorem 1.1 (for the search of positive kT -
periodic solutions and the weight a(t) considered as a kT -periodic function), after
having checked that the constants λ∗, r, R and μ∗(λ) can be chosen independently
on k. This is a consequence of the fact that, for the part in which they depend on
a(t), these constants involve either integrals of a±(t) on I±i or interval lengths of
the form |I±i |, with i = 1, . . . ,m (compare with the discussion in Section 4.5), and
of the fact that the “new” intervals I±i,� (for i = 1, . . . ,m and 	 = 0, . . . , k − 1) are

just 	T -translations of the original I±i (with a(t) T -periodic). �

Remark 6.1. As further information, up to selecting the intervals I±i so that a(t) �≡ 0
on each right neighborhood of τi and on each left neighborhood of σi+1, among the
properties of the positive kT -periodic solutions listed in Theorem 6.1, we can add
the following one (if μ is sufficiently large):

• 0 < u(t) < r on I−i,�, for all i = 1, . . . ,m and 	 = 0, . . . , k − 1.

This assertion is justified by Proposition 5.5 taking μ > μ��
r defined in (5.1) for

ε = r, and observing also that the constants μleft
i (r) and μright

i (r) depend on a(t)
on a T -periodicity interval and do not depend on k. �

From now on, we can use Theorem 6.1 to produce subharmonics. The trick is
that of selecting strings which are minimal in some sense, in order to obtain the
minimality of the period. On the other hand, in counting the subharmonic solutions
we wish to avoid duplications, in the sense that we count only once subharmonics
belonging to the same periodicity class. To this end, we can take advantage of
some combinatorial results related to the concept of Lyndon words. We recall that
an n-ary Lyndon word of length k is a string of k digits of an alphabet B with
n symbols which is strictly smaller in the lexicographic ordering than all of its
non-trivial rotations. It is possible to see that there is a one-to-one correspondence
between the n-ary Lyndon words of length k and the aperiodic necklaces made by
arranging k beads whose color is chosen from a list of n colors (see [22, § 4.2]).

We denote by Ln(k) the number of n-ary Lyndon words of length k. According
to [35, §5.1] we have that

Ln(k) =
1

k

∑
l|k

μ(l)n
k
l ,

where μ(·) is the Möbius function, defined on N \ {0} by μ(1) = 1, μ(l) = (−1)s if l
is the product of s distinct primes and μ(l) = 0 otherwise. For instance, the values
of L3(k) (number of ternary Lyndon words of length k) for k = 2, . . . , 10 are 3, 8,
18, 48, 116, 312, 810, 2184, 5880.

In this setting we can now provide the following consequence of Theorem 6.1.

Theorem 6.2. Let g : R+ → R+ be a continuous function satisfying (g∗), (g0) and
(g∞). Let a : R → R be a locally integrable periodic function of minimal period
T > 0 satisfying (a∗). Then there exists λ∗ > 0 such that for each λ > λ∗ there
exists μ∗(λ) > 0 such that for each μ > μ∗(λ) and each integer k ≥ 2, equation
(1.2) has at least L3m(k) positive subharmonic solutions of order k.

Proof. We consider an alphabet B made by 3m symbols and defined as

B := {0, 1, 2}m.

Let us fix a non-null k-tuple T [k] := (T�)�=0,...,k−1 in the alphabet B. We have that
for each 	 = 0, . . . , k − 1, the element T� ∈ B can be written as T� = (T i

� )i=1,...,m,



POSITIVE SOLUTIONS FOR SUPER-SUBLINEAR INDEFINITE PROBLEMS 823

where T i
� ∈ {0, 1, 2} for i = 1, . . . ,m and 	 = 0, . . . , k − 1. By Theorem 6.1, there

exists at least one positive kT -periodic solution u(t) of equation (1.2) such that

• maxt∈I+
i,�

u(t) < r, if T i
� = 0;

• r < maxt∈I+
i,�

u(t) < ρ, if T i
� = 1;

• ρ < maxt∈I+
i,�

u(t) < R, if T i
� = 2.

In fact, the k-tuple T [k] determines the string S of length km with

Sj := T i
� , for j = i+ 	m.

It remains to see whether, on the basis of the information we have on u(t), we
are able first to prove the minimality of the period and next to distinguish among
solutions not belonging to the same periodicity class. In view of the above listed
properties of the solution u(t), the minimality of the period is guaranteed when the
string T [k] has k as a minimal period (when repeated cyclically). For the second
question, given any string of this kind, we count as the same all those strings (of
length k) which are equivalent by cyclic permutations. To choose exactly one string
in each of these equivalence classes, we can take the minimal one in the lexicographic
order, namely a Lyndon word. As a consequence, we find that each 3m-ary Lyndon
word of length k determines at least one kT -periodic solution which is not pT -
periodic for every p = 1, . . . , k− 1. This solution has indeed kT as minimal period.
Moreover, by definition, solutions associated with different Lyndon words are not
in the same periodicity class. �

6.2. Positive solutions with complex behavior. Having shown the existence of
a mechanism producing subharmonic solutions of arbitrary order, letting k → ∞ we
can provide positive (not necessarily periodic) bounded solutions coded by a non-
null bi-infinite string of three symbols. A similar procedure has been performed in
[5] and [22, § 4.3] for the superlinear case.

Our proof is based on the following diagonal lemma borrowed from [33, Lem-
ma 8.1] and [39, Lemma 4].

Lemma 6.1. Let f : R×Rd → Rd be an L1-Carathéodory function. Let (tn)n∈N be
an increasing sequence of positive numbers and (xn)n∈N be a sequence of functions
from R to Rd with the following properties:

(i) tn → +∞ as n → ∞;
(ii) for each n ∈ N, xn(t) is a solution of

(6.2) x′ = f(t, x)

defined on [−tn, tn];
(iii) there exists a closed and bounded set B ⊆ Rd such that, for each n ∈ N,

xn(t) ∈ B for every t ∈ [−tn, tn].

Then there exists a subsequence (x̃n)n∈N of (xn)n∈N which converges uniformly on
the compact subsets of R to a solution x̃(t) of system (6.2); in particular x̃(t) is
defined on R and x̃(t) ∈ B for all t ∈ R.

In order to simplify the exposition, as in [5, 22] we suppose that the coefficient
a(t) has a positive hump followed by a negative one in a period interval (i.e. m = 1
in hypothesis (a∗)). In this framework, the next result follows.
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Theorem 6.3. Let g : R+ → R+ be a continuous function satisfying (g∗), (g0) and
(g∞). Let a : R → R be a T -periodic locally integrable function such that there exist
α < β < α + T so that a(t) 
 0 on [α, β] and a(t) ≺ 0 on [β, α + T ]. Then, fixed
an arbitrary constant ρ > 0 there exists λ∗ = λ∗(ρ) > 0 such that for each λ > λ∗

there exist two constants r, R with 0 < r < ρ < R and μ∗(λ) = μ∗(λ, r, R) > 0
such that for any μ > μ∗(λ) the following holds: given any two-sided sequence
S = (Sj)j∈Z ∈ {0, 1, 2}Z which is not identically zero, there exists at least one
positive solution u(t) of (1.2) such that

• maxt∈[α+jT,β+jT ] u(t) < r, if Sj = 0;
• r < maxt∈[α+jT,β+jT ] u(t) < ρ, if Sj = 1;
• ρ < maxt∈[α+jT,β+jT ] u(t) < R, if Sj = 2.

Proof. Without loss of generality, we suppose that α = 0 and set τ := β − α, so
that a(t) 
 0 on [0, τ ] and a(t) ≺ 0 on [τ, T ]. We also introduce the intervals

(6.3) J+
j := [jT, τ + jT ], J−

j := [τ + jT, (j + 1)T ], j ∈ Z.

Let ρ, λ > λ∗, r, R and μ∗(λ) be fixed as in Section 4.2 and Section 4.5 for m = 1.
Once more, we emphasize that all our constants can be chosen independently on
k. Thus, having fixed all these constants and taken μ > μ∗(λ), we can produce
kT -periodic solutions following any k-periodic two-sided sequence of three symbols,
as in Theorem 6.1.

Consider now an arbitrary sequence S = (Sj)j∈Z ∈ {0, 1, 2}Z which is not iden-
tically zero. We fix a positive integer n0 such that there is at least an index
j ∈ {−n0, . . . , n0} such that Sj �= 0. Then, for each n ≥ n0 we consider the
(2n+ 1)-periodic sequence Sn = (S ′

j)j ∈ {0, 1, 2}Z which is obtained by truncating
S between −n and n, and then repeating that string by periodicity. We apply
Theorem 6.1, with m = 1, on the periodicity interval [−nT, (n + 1)T ] and find a
positive periodic solution un(t) such that un(t+(2n+1)T ) = un(t) for all t ∈ R and
‖un‖∞ < R (by the concavity of the solutions in the intervals J−

j where a(t) ≺ 0).
Moreover, we also know that

• maxt∈J+
j
un(t) < r, if S ′

j = 0;

• r < maxt∈J+
j
un(t) < ρ, if S ′

j = 1;

• ρ < maxt∈J+
j
un(t) < R, if S ′

j = 2.

In each interval J+
j (of length τ ) the positive solution un(t) is bounded by R and

therefore there exists at least a point tn,j ∈ J+
j such that |u′

n(tn,j)| ≤ R/τ . Hence,

for each t ∈ J+
j and every n ≥ n0, it holds that

(6.4)

|u′
n(t)| =

∣∣∣∣u′
n(tn,j) +

∫ t

tn,j

u′′
n(ξ) dξ

∣∣∣∣ ≤ R

τ
+ λ

∫
J+
j

a+(ξ)g(un(ξ)) dξ

≤ R

τ
+ λ‖a‖+,1g

∗(R) =: K,

where the constants ‖a‖+,1 and g∗(R) are those defined at the beginning of Sec-
tion 4. Notice that K is independent on j and this provides a uniform estimate
for all the intervals where the weight is positive. On the other hand, using the
convexity of un(t) in the intervals J−

j , we know that

|u′
n(t)| ≤ max

ξ∈∂J−
j

|u′
n(ξ)| ≤ max

ξ∈J+
j ∪J+

j+1

|u′
n(ξ)| ≤ K, ∀ t ∈ J−

j , ∀n ≥ n0,
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and thus we are able to find the global uniform estimate

|u′
n(t)| ≤ K, ∀ t ∈ R, ∀n ≥ n0.

Now we write equation (1.2) as the planar system{
u′ = y,

y′ = −
(
λa+(t)− μa−(t)

)
g(u).

From the above estimates, one can see that (up to a reparametrization of indices,
counting from n0) assumptions (i), (ii) and (iii) of Lemma 6.1 are satisfied, taking
tn := nT , f(t, x) = (y,−(λa+(t)− μa−(t))g(u)), with x = (u, y), and

B :=
{
x = (x1, x2) ∈ R2 : 0 ≤ x1 ≤ R, |x2| ≤ K

}
,

which is a closed and bounded set in R2. By Lemma 6.1, there is a solution ũ(t)
of equation (1.2) which is defined on R and such that 0 ≤ ũ(t) ≤ R for all t ∈ R.
Moreover, such a solution ũ(t) is the limit of a subsequence (ũn)n of the sequence
of the periodic solutions un(t).

We claim that

• maxt∈J+
j
ũ(t) < r, if Sj = 0;

• r < maxt∈J+
j
ũ(t) < ρ, if Sj = 1;

• ρ < maxt∈J+
j
ũ(t) < R, if Sj = 2.

To prove our claim, let us fix j ∈ Z and consider the interval J+
j introduced in

(6.3). For each n ≥ |j| (and n ≥ n0) the periodic solution un(t) is defined on R and
such that maxJ+

j
un < r if Sj = 0, r < maxJ+

j
un < ρ if Sj = 1, ρ < maxJ+

j
un < R

if Sj = 2. Passing to the limit on the subsequence (ũn)n, we obtain that

• maxt∈J+
j
ũ(t) ≤ r, if Sj = 0;

• r ≤ maxt∈J+
j
ũ(t) ≤ ρ, if Sj = 1;

• ρ ≤ maxt∈J+
j
ũ(t) ≤ R, if Sj = 2.

By Proposition 5.1 we get that ũ(t) < R, for all t ∈ R. Moreover, since there exists
at least one index j ∈ Z such that Sj �= 0, we know that ũ(t) is not identically
zero. Hence, a maximum principle argument shows that ũ(t) never vanishes. In
conclusion, we have proved that

0 < ũ(t) < R, ∀ t ∈ R.

Next, using this fact, by Proposition 5.2 we observe that

max
t∈J+

j

ũ(t) �= ρ, ∀ j ∈ Z,

and by Proposition 5.3 we have

max
t∈J+

j

ũ(t) �= r, ∀ j ∈ Z,

since, at the beginning, μ has been chosen large enough (note also that we apply
those propositions in the case m = 1 and so the sets I+i,� reduce to the intervals

[0, τ ]+ 	T ). Our claim is thus verified and this completes the proof of the theorem.
�
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Theorem 6.3 can be compared with the main result in [13], providing (under a
few technical conditions on a(t) and g(s)) globally defined positive solutions to (1.2)
according to a symbolic dynamic on two symbols. More precisely, using a dynamical
systems technique it was shown in [13, Theorem 2.3] the existence of two disjoint
compact sets K1,K2 ⊆ R2 such that for any two-sided sequence S = (Sj)j∈Z ∈
{1, 2}Z there is a positive solution u(t) to (1.2) satisfying (u(α+ jT ), u′(α+ jT )) ∈
KSj

for all j ∈ Z. Even if this conclusion is not directly comparable with the one
of Theorem 6.3 (in which solutions are distinguished in dependence of the value
maxt∈[α+jT,β+jT ] u(t)), a careful reading of the arguments in [13] should convince
us that the solutions obtained therein correspond to solutions which are “small”
or “large” according to the code of the present paper. From this point of view,
Theorem 6.3 can thus be seen as an improvement of [13, Theorem 2.3], providing
in addition solutions which are “very small” on some intervals of positivity of the
weight function and thus leading to a symbolic dynamic on three symbols. It has
to be noticed, however, that in [13] some further information for the Poincaré
map associated with (1.2) were obtained; we will comment again on this point in
Section 6.3.

Theorem 6.3 can be extended to the case of a weight function with more than
one positive hump in the interval [0, T ], as described in hypothesis (a∗). The
corresponding more general result is given in the next theorem.

Theorem 6.4. Let g : R+ → R+ be a continuous function satisfying (g∗), (g0) and
(g∞). Let a : R → R be a locally integrable periodic function of minimal period T > 0
satisfying (a∗). Then, fixed an arbitrary constant ρ > 0 there exists λ∗ = λ∗(ρ) > 0
such that for each λ > λ∗ there exist two constants r, R with 0 < r < ρ < R and
μ∗(λ) = μ∗(λ, r, R) > 0 such that for any μ > μ∗(λ) the following holds: given
any two-sided sequence S = (Sj)j∈Z in the alphabet A := {0, 1, 2} which is not
identically zero, there exists at least one positive solution u(t) of (1.2) such that

• maxt∈I+
i,�

u(t) < r, if Sj = 0 for j = i+ 	m;

• r < maxt∈I+
i,�

u(t) < ρ, if Sj = 1 for j = i+ 	m;

• ρ < maxt∈I+
i,�

u(t) < R, if Sj = 2 for j = i+ 	m.

Proof. The proof requires only minor modifications in the argument applied for
Theorem 6.3 and thus the details are omitted. We only observe that the uniform
bound K for |u′

n(t)| is now achieved by working separately on each interval I+i,�.

When arguing like in (6.4) one obtains

|u′
n(t)| ≤

R

|I+i |
+ λ‖a‖+,ig

∗(R) =: Ki, ∀ t ∈ I+i,�, ∀n ≥ n0.

Now all the rest works fine for

K := max
i=1,...,m

Ki.

The same final arguments allow us to obtain the theorem. �

Remark 6.2. As further information, up to selecting the intervals I±i so that a(t) �≡ 0
on each right neighborhood of τi and on each left neighborhood of σi+1, among the
properties of the positive solutions listed in Theorem 6.3 and Theorem 6.4, we can
add the following one (if μ is sufficiently large):

• 0 < u(t) < r on I−i,�, for all i ∈ {1, . . . ,m} and for all 	 ∈ Z.
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This assertion is justified by Proposition 5.5 taking μ > μ��
r defined in (5.1) for

ε = r, and observing also that the constants μleft
i (r) and μright

i (r) depend on a(t)
on a T -periodicity interval. �

6.3. A dynamical systems perspective. In the two previous sections we have
proved the presence of chaotic-like dynamics which is highlighted by the coexis-
tence of infinitely many subharmonic solutions together with non-periodic bounded
solutions which can be coded by sequences of three symbols. Our next goal is to
show that our results allow us to enter a classical framework for complex dynamical
systems, namely the semiconjugation with the Bernoulli shift.

We start with some formal definitions. Let B be a finite set of n ≥ 2 elements
(called symbols), conventionally denoted as B := {b1, . . . , bn}, which is endowed
with the discrete topology. Let Σn := BZ be the set of all two-sided sequences
T = (T�)�∈Z where, for each 	 ∈ Z, the element T� is a symbol of the alphabet
B. The set Σn =

∏
�∈Z B, endowed with the product topology, turns out to be a

compact metrizable space. As a suitable distance on Σn we take

d(T ′, T ′′) :=
∑
�∈Z

δ(T ′
� , T ′′

� )

2|�|
, T ′, T ′′ ∈ Σn,

where δ is the discrete distance on B, that is, δ(s′, s′′) = 0 if s′ = s′′ and δ(s′, s′′) =
1 if s′ �= s′′. We introduce a map σ : Σn → Σn called the shift automorphism
(cf. [51, p. 770]) or Bernoulli shift (cf. [53]) and defined as

σ(T ) = T ′, with T ′
� := T�+1, ∀ 	 ∈ Z.

The map σ is a bijective continuous map (a homeomorphism) of Σn which possesses
all the features usually associated with the concept of chaos, such as transitivity,
density of the set of periodic points and positive topological entropy (which is log(n)
for an alphabet of n symbols).

Given a topological space X and a continuous map ψ : X → X, a typical way
to prove that ψ is “chaotic” consists of verifying that ψ has the shift map as a
factor, namely that there exist a compact set Y ⊆ X which is invariant for ψ
(i.e. ψ(Y ) = Y ) and a continuous and surjective map π : Y → Σn such that the
diagram

Y

π
��

ψ �� Y

π
��

Σn σ
�� Σn

commutes, that is,

(6.5) π ◦ ψ = σ ◦ π.
If we are in this situation we say that the map ψ|Y is semiconjugate with the shift
on n symbols. Usually the best form of chaos occurs when the map π : Y → Σn is
a homeomorphism. In this latter case the map ψ|Y is said to be conjugate with the
shift σ. This, for instance, occurs for the classical Smale horseshoe (see [43, 51]).
In many concrete examples of differential equations, the conjugation with the shift
map is not feasible and many investigations have been addressed toward the proof
of a semiconjugation with the Bernoulli shift, possibly accompanied by some further
information, such as density of periodic points, in order to provide a description of
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chaotic dynamics which is still interesting for the applications. Quoting Block and
Coppel from [8, Introduction],

“ . . . there is no generally accepted definition of chaos. It is our
view that any definition for more general spaces should agree with
ours in the case of an interval. . . . we show that a map is chaotic
if and only if some iterate has the shift map as a factor, and we
propose this as a general definition.”

Indeed, the semiconjugation of an iterate of a map ψ with the Bernoulli shift is
defined as B/C-chaos in [3].

We plan to prove the existence of a strong form of B/C-chaos coming from
Theorem 6.1 and Theorem 6.4, namely the existence of a compact invariant set Y
for a continuous homeomorphism ψ such that ψ|Y satisfies (6.5) and such that to
any periodic sequence of symbols corresponds a periodic solution of (1.2). Such
a stronger form of chaos has been produced by several authors using dynamical
systems techniques (see, for instance, [13,16,41,42,52,54,55]). Obtaining this kind
of result with the coincidence degree approach appears new in the literature.

Let us start by defining a suitable metric space and a homeomorphism on it.
Let X be the set of the continuous functions z = (x, y) : R → R2. For each z1 =
(x1, y1), z2 = (x2, y2) ∈ X, we define

ϑN (z1, z2) := max
{
|x1(t)− x2(t)|+ |y1(t)− y2(t)| : t ∈ [−N,N ]

}
, N ∈ N \ {0},

and we set

dist (z1, z2) :=
∞∑

N=1

1

2N
ϑN (z1, z2)

1 + ϑN (z1, z2)
.

It is a standard task to check that (X, dist) is a complete metric space. Moreover,
given a sequence of functions (zk)k in X and a function ẑ ∈ X, we have that zk → ẑ
with respect to the distance of X if and only if zk(t) converges uniformly to ẑ(t)
in each compact interval of R (cf. [7, ch. 1], [49, ch. III] and [50, §20]). We also
recall that a family of functions M ⊆ X is relatively compact if and only if for
every compact interval J the set of restrictions to J of the functions belonging to
M is relatively compact in C(J,R2) (cf. [17, p. 2]). Next, recalling that T > 0 is the
minimal period of the weight function a(t), we introduce the shift map ψ : X → X
defined by

(ψu)(t) := u(t+ T ), t ∈ R,

which is a homeomorphism of X onto itself. The discrete dynamical system induced
by ψ is usually referred to as a Bebutov dynamical system on X.

For the next results we assume the standard hypotheses on the non-linearity g(s)
and on the coefficient a(t), that is, g : R+ → R+ is a continuous function satisfying
(g∗), (g0), (g∞), a : R → R is a T -periodic locally integrable function satisfying (a∗)
with minimal period T . We suppose also that all the positive constants ρ, λ > λ∗,
r, R and μ∗(λ) are fixed as in Section 4.2 and Section 4.5. Let also μ > 0.

We consider the first order differential system

(6.6)

{
x′ = y,

y′ = −
(
λa+(t)− μa−(t)

)
g(x),

associated with (1.2). Even if all our results concern non-negative solutions of (1.2),
in dealing with system (6.6) it would be convenient to have the vector field (i.e. the
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right-hand side of the system) defined for all t ∈ R and (x, y) ∈ R2. For this reason,
we extend g(s) to the whole real line, for instance by setting g(s) = 0 for s ≤ 0 (any
extension we choose will have no effect in what follows). As usual the solutions of
(6.6) are meant in the Carathéodory sense.

Next, we denote by Y0 the subset of X made up of the globally defined solutions
(x(t), y(t)) of (6.6) such that 0 ≤ x(t) ≤ R, for all t ∈ R. Observe that (0, 0) ∈ Y0

(as u(t) ≡ 0 is the trivial solution of (1.2)). On the other hand, if (x, y) ∈ Y0 with
x �≡ 0, then x(t) > 0 for all t ∈ R.

Lemma 6.2. There exists a constant K > 0 such that for each (x, y) ∈ Y0 it holds
that

(6.7) |y(t)| ≤ K, ∀ t ∈ R.

Moreover, Y0 is a compact subset of X which is invariant for the map ψ.

Proof. The estimates needed to prove this result have been already obtained along
the proof of Theorem 6.3. We briefly repeat the argument since the context here is
slightly different. Let (x, y) ∈ Y0. Since 0 ≤ x(t) ≤ R for all t ∈ R, we have that,
for all i ∈ {1, . . . ,m} and 	 ∈ Z, there exists at least a point t̂i,� ∈ I+i,� such that

|y(t̂i,�)| ≤ R/|I+i | (recall the definition of I+i,� in (6.1)). Hence, for each t ∈ I+i,�, it
holds that

|y(t)| =
∣∣∣∣y(t̂i,�) +

∫ t

t̂i,�

y′(ξ) dξ

∣∣∣∣ ≤ R

|I+i |
+ λ

∫
I+
i,�

a+(ξ)g(x(ξ))dξ

≤ R

|I+i |
+ λ‖a‖+,ig

∗(R) =: Ki.

Note that the constant Ki does not depend on the index 	. Therefore, setting

K := max
i=1,...,m

Ki,

we get

|y(t)| ≤ K, ∀ t ∈ I+i,�, ∀ i = 1, . . . ,m, ∀ 	 ∈ Z.

On the other hand, using the convexity of x(t) in the intervals I−i,� we know that

|y(t)| = |x′(t)| ≤ max
ξ∈∂I−

i,�

|x′(ξ)| ≤ K, ∀ t ∈ I+i,�, ∀ i = 1, . . . ,m, ∀ 	 ∈ Z.

This proves inequality (6.7).
From system (6.6), we know that the absolutely continuous vector function

(x, y) ∈ Y0 satisfies

|x′(t)|+ |y′(t)| ≤ K +
(
λa+(t) + μa−(t)

)
g∗(R), for a.e. t ∈ R.

Therefore, the Ascoli-Arzelà theorem implies that the set of restrictions of the
functions in Y0 to any compact interval is relatively compact in the uniform norm.
Thus we conclude that the closed set Y0 is a compact subset of X.

Finally, we observe that the invariance of Y0 under the map ψ follows from the T -
periodicity of the coefficients in system (6.6), which in turn implies that (x(t), y(t))
is a solution of (6.6) if and only if (x(t + T ), y(t + T )) is a solution of the same
system. �

The next result summarizes the properties obtained in Proposition 5.1, Propo-
sition 5.2 and Proposition 5.3.
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Lemma 6.3. Suppose that μ > μ∗(λ). Then, given any (x, y) ∈ Y0, for each
i ∈ {1, . . . ,m} and 	 ∈ Z we have that one of the following alternatives holds:
maxt∈I+

i,�
x(t) < r, r < maxt∈I+

i,�
x(t) < ρ or ρ < maxt∈I+

i,�
x(t) < R.

Let

B := {0, 1, 2}m

be the alphabet of the 3m elements of the form (ω1, . . . , ωm), where ωi ∈ {0, 1, 2}
for each i = 1, . . . ,m.

We define a semiconjugation π between Y0 and the set Σ3m associated with B
as follows. Suppose that μ > μ∗(λ). To each element z = (x, y) ∈ Y0 the map π
associates a sequence π(z) = T = (T�)�∈Z ∈ Σ3m defined as

T� = (T 1
� , . . . , T m

� ) ∈ B, 	 ∈ Z,

where, for i = 1, . . . ,m,

• T i
� = 0, if maxt∈I+

i,�
x(t) < r;

• T i
� = 1, if r < maxt∈I+

i,�
x(t) < ρ;

• T i
� = 2, if ρ < maxt∈I+

i,�
x(t) < R.

Lemma 6.3 guarantees that the above map is well-defined.
Now we are in position to state the main result of this section.

Theorem 6.5. Suppose that μ > μ∗(λ). Then the map π : Y0 → Σ3m is continuous,
surjective and such that the diagram

Y0

π
��

ψ �� Y0

π
��

Σ3m σ
�� Σ3m

commutes. Furthermore, for every integer k ≥ 1, the counterimage of any k-
periodic sequence in Σ3m contains at least a point (u, y) ∈ Y0 such that u(t) is a
kT -periodic solution of (1.2).

Proof. Part of the statement follows immediately from our previous results. The
surjectivity of the map π is a consequence of Theorem 6.4. Indeed, if T ∈ Σ3m

is the null sequence, then it is the image of the trivial solution (0, 0) ∈ Y0. On
the other hand, given any non-null sequence T = (T�)�∈Z, with T� = (T 1

� , . . . , T m
� )

for each 	 ∈ Z, there exists at least one globally defined positive solution u(t) to
equation (1.2) such that

• maxt∈I+
i,�

u(t) < r, if T i
� = 0;

• r < maxt∈I+
i,�

u(t) < ρ, if T i
� = 1;

• ρ < maxt∈I+
i,�

u(t) < R, if T i
� = 2.

Then π maps (u(t), u′(t)) = (x(t), y(t)) ∈ Y0 to T . In a similar way, Theorem 6.1
ensures that, for any integer k ≥ 1, the counterimage of a k-periodic sequence in
Σ3m can be chosen as a kT -periodic solution of (6.6).

The commutativity of the diagram follows from the fact that, if (x(t), y(t)) is a
solution of (6.6), then (x(t+T ), y(t+T )) is also a solution of the same system and,
moreover, if (T�)�∈Z is the sequence of symbols associated with (x(t), y(t)), then
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the sequence corresponding to (x(t+ T ), y(t+ T )) must be (T�+1)�∈Z. This proves
(6.5).

Thus we have only to check the continuity of π. Let z̃ = (x̃, ỹ) ∈ Y0 and

T̃ = π(z̃). Let zn = (xn, yn) ∈ Y0 be a sequence such that zn → z̃ in Y0. This
means that (xn(t), yn(t)) converges uniformly to (x̃(t), ỹ(t)) on any compact interval
[−NT,NT ] of the real line. For any interval I+i,� ⊆ [−NT,NT ], we have that
either maxI+

i,�
x̃ < r or r < maxI+

i,�
x̃ < ρ or ρ < maxI+

i,�
x̃ < R. By the uniform

convergence of the sequence of solutions on I+i,�, there exists an index n∗
i,� such that,

for each n ≥ n∗
i,�, the solution xn(t) satisfies the same inequalities as x̃(t) on the

interval I+i,�. Hence, for any fixed N , there is an index

n∗
N := max

{
n∗
i,� : i = 1, . . . ,m, 	 = −N, . . . , N − 1

}
such that, setting T n = π(zn), it holds that T n

� = T̃� for all n ≥ n∗
N and 	 =

−N, . . . , N − 1. By the topology of Σ3m , this means that T n converges to T̃ . This
concludes the proof. �

From Theorem 6.5 many consequences can be produced. For instance, we can
refine the set Y0 in order to obtain an invariant set with dense periodic trajectories
of any period. This follows via a standard procedure that we describe below for the
reader’s convenience.

Let Yper be the set of all the pairs (x, y) ∈ Y0 which are kT -periodic solutions of
(6.6) for some integer k ≥ 1 and let

Y := cl(Yper) ⊆ Y0,

where the closure is taken with respect to the distance in the space X. Clearly,
the set Y is compact, invariant for the map ψ and Yper is dense in Y . Then, from
Theorem 6.5 we immediately have that for μ > μ∗(λ) the map ψ|Y : Y → Y is
semiconjugate (via the surjection π|Y ) with the shift σ on Σ3m and, moreover, for
every integer k ≥ 1, the counterimage by π of any k-periodic sequence in Σ3m

contains at least a point (u, y) ∈ Y such that u(t) is a kT -periodic solution of (1.2).

As a last step, we want to express our results in terms of the Poincaré map
associated with system (6.6). To this end, we further suppose that the non-linearity
g(s) is locally Lipschitz continuous on R+. This, in turn, implies the uniqueness
of the solutions for the initial value problems associated with (6.6). We recall that
the Poincaré map associated with system (6.6) is defined as

ΨT : domΨT (⊆ R2) → R2, z0 = (x0, y0) 
→ z(T, z0),

where z(t, z0) = (x(t, z0), y(t, z0)) is the solution of system (6.6) such that x(0) = x0

and y(0) = y0. The map ΨT is defined provided that the solutions can be extended
to the interval [0, T ]. In general the domain of ΨT is an open subset of R2 and ΨT

is a homeomorphism of domΨT onto its image. In our case, due to the sublinear
growth at infinity (g∞), we have that domΨT = R2 and ΨT is a homeomorphism
of R2 onto itself.

Let

W0 :=
{
(x(0), y(0)) ∈ [0, R]× [−K,K] : (x, y) ∈ Y0

}
and define Π: W0 → Σ3m as

Π(z0) := π(z(·, z0)), z0 ∈ W0.
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Notice that the map Π is well defined; indeed, if z0 ∈ W0, then z(·, z0) ∈ Y0.
The next result is an equivalent version of Theorem 6.5 where chaotic dynamics

are described in terms of the Poincaré map.

Theorem 6.6. Suppose that μ > μ∗(λ). Then the map Π: W0 → Σ3m is continu-
ous, surjective and such that the diagram

W0

Π
��

ΨT �� W0

Π
��

Σ3m σ
�� Σ3m

commutes. Furthermore, for every integer k ≥ 1, the counterimage of any k-
periodic sequence in Σ3m contains at least a point w ∈ W0 which is a k-periodic point
of the Poincaré map and so that the solution u(t) of (1.2), with (u(0), u′(0)) = w,
is a kT -periodic solution of (1.2).

Proof. Let ζ : W0 → Y0 be the map which associates to any initial point z0 the
solution z(·, z0) of (6.6) with (x(0), y(0)) = z0. We consider the diagram

W0

ζ
��

ΨT �� W0

ζ
��

Y0
ψ

�� Y0

and observe that the map ζ is bijective, continuous and with continuous inverse.
Indeed, if zn → z0 in R2, then z(t, zn) converges uniformly to z(t, z0) on the compact
subsets of R. The above diagram is also commutative because (by the uniqueness of
the solutions to the initial value problems) the solution of (6.6) starting at the point
z(T, z0) coincides with z(t+ T, z0). From these remarks and the commutativity of
the diagram in Theorem 6.5 we easily conclude. �

We conclude this section with a final remark concerning a dynamical consequence
of Theorem 6.6. Consider again the alphabet B of 3m elements of the form ω =
(ω1, . . . , ωm), where ωi ∈ {0, 1, 2} for each i = 1, . . . ,m. To each element ω ∈ B we
associate the set

Kω :=

⎧⎪⎨
⎪⎩w ∈ W0 :

maxt∈I+
i
x(t, w) < r, if ωi = 0

r < maxt∈I+
i
x(t, w) < ρ, if ωi = 1

ρ < maxt∈I+
i
x(t, w) < R, if ωi = 2

⎫⎪⎬
⎪⎭ ,

which is compact, as an easy consequence of Lemma 6.3. By definition, the sets Kω

for ω ∈ B are pairwise disjoint subsets of [0, R]× [−K,K]. Hence, another way to
describe our results is the following:

For each two-sided sequence (T�)�∈Z there exists a corresponding
sequence (w�)�∈Z ∈ (W0)

Z such that, for all 	 ∈ Z,

(6.8) w�+1 = ΨT (w�) and w� ∈ KT�
;

moreover, whenever (T�)�∈Z is a k-periodic sequence for some in-
teger k ≥ 1, there exists a k-periodic sequence (w�)�∈Z ∈ (W0)

Z

satisfying condition (6.8).
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In this manner, we enter a setting of coin-tossing type dynamics widely explored
in the literature. As a consequence, in the case m = 1, we obtain a dynamic on
three symbols, described as itineraries for the Poincaré map jumping among three
compact mutually disjoint sets K0,K1,K2. A previous result in this direction,
but involving only two symbols, was obtained in [13] with a completely different
approach.

7. Related results

In this final section we briefly describe some results which can be obtained by
minor modifications of the arguments developed within this paper.

7.1. The non-Hamiltonian case. One of the advantages in obtaining results
of existence/multiplicity with a topological degree technique lies in the fact that
the degree is stable with respect to small perturbations of the operator. Such a
remark, when applied to equation (1.2), allows us to establish the same result for
the equation

(7.1) u′′ + cu′+
(
λa+(t)− μa−(t)

)
g(u) = 0

where c ∈ R and c �= 0. More precisely, in the same setting of Theorem 1.1, once
λ > λ∗ and μ > μ∗(λ) are fixed, there exists a constant ε = ε(λ, μ) > 0 such that the
statement of the theorem is still true for any c ∈ R with |c| < ε. The same remark
applies to the results in Section 6, so that we can prove the existence of infinitely
many positive subharmonic solutions as well as the presence of chaotic dynamics
on 3m symbols also for equation (7.1). Typically, results about multiplicity of
subharmonic solutions are achieved by exploiting the Hamiltonian structure of the
equation and therefore using variational or symplectic techniques. Our approach
shows that, for equations with a sign-indefinite weight, we can achieve such results
also in the non-Hamiltonian case.

A possibly interesting question which naturally arises is whether these multi-
plicity results are still valid for an arbitrary c ∈ R. In the superlinear indefinite
case, Capietto, Dambrosio and Papini in [15] produced such kind of results for
sign-changing (oscillatory) solutions. More recently, in [22] complex dynamics for
positive solutions has been obtained. Concerning our super-sublinear setting, all
the abstract approach and the strategy for the proof work exactly the same for the
linear differential operator u 
→ −u′′ − cu′ for an arbitrary c ∈ R (see Remark 2.1
and Remark 3.1). Thus, the only problem in extending all our results of the pre-
vious sections to equation (7.1) comes from some additional difficulties related to
the technical estimates. In particular, we have often exploited the convexity of
the solutions in the intervals I−i and their concavity in the intervals I+i . In the
recent paper [11] we have proved the existence of two positive T -periodic solutions
to equation (7.1) by effectively replacing the convexity/concavity properties with
suitable monotonicity properties for the map t 
→ ectu′(t). Similar tricks have been
successfully applied in [22] to obtain multiplicity results for equation (7.1) with a su-
perlinear g(s). It is therefore quite reasonable that these arguments can be adapted
to our case. However, due to the lengthy and complex technical details required in
Section 4, we have preferred to skip further investigations in this direction.
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7.2. Neumann and Dirichlet boundary conditions. As anticipated, versions
of Theorem 1.1 for both Neumann and Dirichlet boundary conditions can be given.
In these cases, we can consider a slightly more general sign condition for the mea-
surable weight function a : [0, T ] → R, which reads as follows:

(a∗∗) there exist 2m+ 2 points (with m ≥ 1)

0 = τ0 ≤ σ1 < τ1 < . . . < σi < τi < . . . < σm < τm ≤ σm+1 = T

such that a(t) 
 0 on [σi, τi], for i = 1, . . . ,m, and a(t) ≺ 0 on [τi, σi+1],
for i = 0, . . . ,m.

This means that a(t) has m positive humps [σi, τi] (i = 1, . . . ,m) separated by m−1
negative ones [τi, σi+1] (i = 1, . . . ,m − 1); in addition, a(t) might have one/two
further negativity intervals, precisely an initial one [τ0, σ1] = [0, σ1] or/and a final
one [τm, σm+1] = [τm, T ] (compare with Remark 1.1). In this setting, the following
result holds true.

Theorem 7.1. Let g : R+ → R+ be a continuous function satisfying (g∗), (g0)
and (g∞). Let a : [0, T ] → R be an integrable function satisfying (a∗∗). Then there
exists λ∗ > 0 such that for each λ > λ∗ there exists μ∗(λ) > 0 such that for each
μ > μ∗(λ) the Neumann problem{

u′′+
(
λa+(t)− μa−(t)

)
g(u) = 0,

u′(0) = u′(T ) = 0,

has at least 3m−1 positive solutions. The same result holds for the Dirichlet problem{
u′′+

(
λa+(t)− μa−(t)

)
g(u) = 0,

u(0) = u(T ) = 0.

Of course, such solutions can again be coded via a non-null string S ∈ {0, 1, 2}m
as described in Theorem 1.1. We also remark that, as usual, a positive solution
of the Dirichlet problem is a function u(t) solving the equation and such that
u(0) = u(T ) = 0 and u(t) > 0 for any t ∈ ]0, T [.

For the proof of Theorem 7.1, we rely on the abstract setting of Section 2 (with
the changes underlined in Remark 2.1) and on the general strategy presented in
Section 3.1. The key point is then the verification of the assumptions of Lemma 3.1
and Lemma 3.2 (in the slightly modified versions described in Remark 3.1). To
this end, we can take advantage of the technical estimates developed in Section 4.1
(which indeed are independent of the boundary conditions) and we can prove the
result with minor modifications of the arguments in the remaining part of Section 4.

Finally, we observe that the same result can be obtained for positive solutions
of equation (1.2) satisfying the mixed boundary conditions u(0) = u′(T ) = 0 or
u′(0) = u(T ) = 0 (compare with [21, §5.4]).

7.3. Radially symmetric positive solutions. As a standard consequence of
Theorem 7.1, we can produce multiplicity results for radially symmetric positive
solutions to elliptic BVPs on an annulus.

More precisely, let ‖ · ‖ be the Euclidean norm in RN (for N ≥ 2) and let

Ω :=
{
x ∈ RN : R1 < ‖x‖ < R2

}
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be an open annular domain, with 0 < R1 < R2. We deal with the elliptic partial
differential equation

(7.2) −Δu =
(
λq+(x)− μq−(x)

)
g(u) in Ω

together with Neumann boundary conditions

(7.3)
∂u

∂n
= 0 on ∂Ω

or Dirichlet boundary conditions

(7.4) u = 0 on ∂Ω.

For simplicity, we look for classical solutions to (7.2) (namely, u ∈ C2(Ω)) and,
accordingly, we assume that q : Ω → R is a continuous function. Moreover, in order
to transform the partial differential equation (7.2) into a second order ordinary
differential equation of the form (1.2) so as to apply Theorem 7.1, we also require
that q(x) is a radially symmetric function, i.e. there exists a continuous function
Q : [R1, R2] → R such that

(7.5) q(x) = Q(‖x‖), ∀x ∈ Ω.

We also set

Qλ,μ(r) := λQ+(r)− μQ−(r), r ∈ [R1, R2],

where, as usual, λ, μ > 0.
Looking for radially symmetric (classical) solutions to (7.2), i.e. solutions of

the form u(x) = U(‖x‖) where U(r) is a scalar function defined on [R1, R2], we
transform equation (7.2) into

(7.6)
(
rN−1 U ′)′ + rN−1Qλ,μ(r)g(U) = 0.

Moreover, the boundary conditions (7.3) and (7.4) become

U(R1) = U(R2) = 0 and U ′(R1) = U ′(R2) = 0,

respectively. Via the change of variable

t = h(r) :=

∫ r

R1

ξ1−N dξ

and the positions

T :=

∫ R2

R1

ξ1−N dξ, r(t) := h−1(t) and v(t) = U(r(t)),

we can further convert (7.6) and the corresponding boundary conditions into the
Neumann and Dirichlet problems{

v′′ + aλ,μ(t)g(v) = 0,

v′(0) = v′(T ) = 0,
and

{
v′′ + aλ,μ(t)g(v) = 0,

v(0) = v(T ) = 0,

respectively, where

a(t) := r(t)2(N−1)Q(r(t)), t ∈ [0, T ],

and aλ,μ(t) := λa+(t)− μa−(t), for t ∈ [0, T ].
In this setting, Theorem 7.1 gives the following result. The straightforward proof

is omitted.
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Theorem 7.2. Let g : R+ → R+ be a continuous function satisfying (g∗), (g0) and
(g∞). Let Q : [R1, R2] → R be a continuous function satisfying

(Q∗∗) there exist 2m+ 2 points (with m ≥ 1)

R1 = τ0 ≤ σ1 < τ1 < . . . < σi < τi < . . . < σm < τm ≤ σm+1 = R2

such that Q(r) 
 0 on [σi, τi], for i = 1, . . . ,m, and Q(r) ≺ 0 on [τi, σi+1],
for i = 0, . . . ,m,

and let q : Ω → R be defined as in (7.5). Then there exists λ∗ > 0 such that for each
λ > λ∗ there exists μ∗(λ) > 0 such that for each μ > μ∗(λ) the Neumann problem
associated with (7.2) has at least 3m − 1 radially symmetric positive (classical)
solutions. The same result holds for the Dirichlet problem associated with (7.2).

Appendix A. Combinatorial argument

In this appendix, we present the combinatorial argument needed in the proof

of Theorem 3.2. In more detail, recalling the definitions of ΩI,J
(r,ρ,R) and ΛI,J

(r,ρ,R)

given in (3.1) and (3.3) respectively, from formula (3.2) (concerning the degrees on

ΩI,J
(r,ρ,R)), we prove that, for any pair of subset of indices I,J ⊆ {1, . . . ,m} with

I ∩ J = ∅, we have

DL

(
L−Nλ,μ,Λ

I,J
(r,ρ,R)

)
= (−1)#I .

We offer two independent proofs since we believe that both possess some peculiar
aspects which might be also adapted to different situations.

A.1. First argument. In this first part we present a combinatorial argument
which is related to the concept of valuation, as introduced in [32].

Let m ∈ N be a positive integer. We denote by

A :=
{
A1 ×A2 × . . .×Am : Ai ∈ P({0, 1, 2})

}
the set of the 8m Cartesian products of m subsets of {0, 1, 2}.

Let

(A.1) A := A1 ×A2 × . . .×Am

be an element of A, let i ∈ {1, . . . ,m} be a fixed index and let also Bi ∈ P({0, 1, 2}).
We introduce the following notation:

A[i : Bi] := A1 × . . .×Ai−1 ×Bi × Ai+1 × . . .×Am.

Note that for any fixed A as above and i ∈ {1, . . . ,m} it holds that A = A[i : Ai].
We consider a function

d : A → Z

which satisfies the following property:

Additivity property. Let i ∈ {1, . . . ,m} and Bi ∈ P({0, 1, 2}).
Suppose that B′

i, B
′′
i ⊆ Bi are disjoint (possibly empty) and such

that

Bi = B′
i ∪B′′

i .

Then, for all A ∈ A, it holds that

d(A[i : Bi]) = d(A[i : B′
i]) + d(A[i : B′′

i ]).
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From the additivity property (applied in the case Bi = B′
i = B′′

i = ∅) we imme-
diately obtain that, if there exists an index i ∈ {1, . . . ,m} such that Ai = ∅, then
d(A1 × . . .×Am) = 0.

Moreover, we assume that d satisfies the following rules:

(R1) If there exists an index i ∈ {1, . . . ,m} such that Ai = {0, 1} and Aj ∈
{{0}, {0, 1, 2}} for all j ∈ {1, . . . ,m} such that Aj �= {0, 1}, then

d(A1 × . . .×Am) = 0.

(R2) If Ai ∈ {{0}, {0, 1, 2}}, for all i = 1, . . . ,m, then

d(A1 × . . .×Am) = 1.

Our goal is to compute d(A1× . . .×Am) when Ai ∈ {{0}, {1}, {2}, {0, 1, 2}}, for
all i = 1, . . . ,m.

As a first step we prove a generalization of rule (R1).

Lemma A.1. If there exists an index i ∈ {1, . . . ,m} such that Ai = {0, 1} and
Aj ∈ {{0}, {2}, {0, 1, 2}} for all j ∈ {1, . . . ,m} such that Aj �= {0, 1}, then

d(A1 × . . .×Am) = 0.

Proof. We prove the statement by induction on the non-negative integer

k := #
{
j ∈ {1, . . . ,m} : Aj = {2}

}
.

Case k = 0. If there is no j ∈ {1, . . . ,m} such that Aj = {2}, the thesis follows
by rule (R1).

Case k = 1. Suppose that there is exactly one index j ∈ {1, . . . ,m} such that
Aj = {2}. Recalling the definition of A in (A.1), it is easy to see that

A[j : {0, 1, 2}] = A ∪A[j : {0, 1}].

Then, by the additivity property of d and rule (R1), we obtain

d(A) = d(A[j : {0, 1, 2}])− d(A[j : {0, 1}]) = 0− 0 = 0.

Inductive step. Suppose that the statement holds for k. We prove it for k+1. Let
j ∈ {1, . . . ,m} be such that Aj = {2}. As above, from

A[j : {0, 1, 2}] = A ∪A[j : {0, 1}],

we obtain

d(A) = d(A[j : {0, 1, 2}])− d(A[j : {0, 1}]).
By the inductive hypothesis, we know that

d(A[j : {0, 1, 2}]) = 0 and d(A[j : {0, 1}]) = 0

(since A[j : {0, 1, 2}] and A[j : {0, 1}] both have exactly k indices i such that
Ai = {2}). The thesis immediately follows. �

Now we provide a generalization of rule (R2).

Lemma A.2. If Ai ∈ {{0}, {2}, {0, 1, 2}}, for all i = 1, . . . ,m, then

d(A1 × . . .×Am) = 1.



838 A. BOSCAGGIN, G. FELTRIN, AND F. ZANOLIN

Proof. We prove the statement by induction on the non-negative integer

k := #
{
j ∈ {1, . . . ,m} : Aj = {2}

}
.

Case k = 0. If there is no j ∈ {1, . . . ,m} such that Aj = {2}, the thesis follows
by rule (R2).

Case k = 1. Suppose that there is exactly one index j ∈ {1, . . . ,m} such that
Aj = {2}. Recalling the definition of A in (A.1), it is easy to see that

A[j : {0, 1, 2}] = A ∪A[j : {0, 1}].
Then, by the additivity property of d and rules (R1) and (R2), we obtain

d(A) = d(A[j : {0, 1, 2}])− d(A[j : {0, 1}]) = 1− 0 = 1.

Inductive step. Suppose that the statement holds for k. We prove it for k+1. Let
j ∈ {1, . . . ,m} be such that Aj = {2}. As above, from

A[j : {0, 1, 2}] = A ∪A[j : {0, 1}],
we obtain

d(A) = d(A[j : {0, 1, 2}])− d(A[j : {0, 1}]).
By the inductive hypothesis, we obtain that d(A[j : {0, 1, 2}]) = 1 (since
A[j : {0, 1, 2}] has exactly k indices i such that Ai = {2}). By Lemma A.1,
we have that d(A[j : {0, 1}]) = 0. The thesis immediately follows. �

Finally, using the rules presented above, we obtain the final lemma.

Lemma A.3. If Ai ∈ {{0}, {1}, {2}, {0, 1, 2}}, for all i = 1, . . . ,m, then

d(A1 × . . .×Am) = (−1)#I ,

where I :=
{
i ∈ {1, . . . ,m} : Ai = {1}

}
.

Proof. We prove the statement by induction on the non-negative integer k := #I.
Case k = 0. If there is no i ∈ {1, . . . ,m} such that Ai = {1}, the thesis follows by
Lemma A.2.

Case k = 1. Suppose that there is exactly one index i ∈ {1, . . . ,m} such that
Ai = {1}. Recalling the definition of A in (A.1), it is easy to see that

A[i : {0, 1, 2}] = A[i : {0}] ∪A ∪A[i : {2}].
Then, by the additivity property of d and Lemma A.2, we obtain

d(A) = d(A[i : {0, 1, 2}])− d(A[i : {0}])− d(A[i : {2}])
= 1− 1− 1 = −1 = (−1)#I .

Inductive step. Suppose that the statement holds when the set I has k elements.
We prove it for #I = k + 1. Let i ∈ {1, . . . ,m} be such that Ai = {1}. By
assumption there are k + 1 indices with such a property. As above, from

A[i : {0, 1, 2}] = A[i : {0}] ∪A ∪A[i : {2}],
we obtain

d(A) = d(A[i : {0, 1, 2}])− d(A[i : {0}])− d(A[i : {2}]).
Now, all the sets A[i : {0, 1, 2}], A[i : {0}] and A[i : {2}] have precisely k indices j
such that Aj = {1}. Then, by the inductive hypothesis, we obtain that

d(A[i : {0, 1, 2}]) = d(A[i : {0}]) = d(A[i : {2}]) = (−1)k
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and hence

d(A) = −(−1)k = (−1)k+1 = (−1)#I .

The thesis immediately follows. �

We conclude this first part by showing how to apply this approach to obtain
formula (3.4).

To any element A ∈ A we associate an open set ΩA made up of the continuous
functions u : [0, T ] → R which, for all i = 1, . . . ,m, satisfy

• maxt∈I+
i
|u(t)| < r, if Ai = {0};

• r < maxt∈I+
i
|u(t)| < ρ, if Ai = {1};

• ρ < maxt∈I+
i
|u(t)| < R, if Ai = {2};

• maxt∈I+
i
|u(t)| < ρ, if Ai = {0, 1};

• either maxt∈I+
i
|u(t)| < r or ρ < maxt∈I+

i
|u(t)| < R, if Ai = {0, 2};

• r < maxt∈I+
i
|u(t)| < R, if Ai = {1, 2};

• maxt∈I+
i
|u(t)| < R, if Ai = {0, 1, 2}.

By convention, we also set ΩA = ∅ if there is an index i ∈ {1, . . . ,m} such that
Ai = ∅. In this manner the set ΩA is well defined for every A ∈ A.

Having fixed ρ, λ > λ∗, r < ρ < R and μ > μ∗(λ) as in Section 4, we have that
the coincidence degree DL(L − Nλ,μ,ΩA) is well defined for every A ∈ A. Hence
we set

d(A) := DL

(
L−Nλ,μ,ΩA

)
.

Notice that the sets ΩI,J
(r,ρ,R) introduced in (3.1) are of the form ΩA for A with

Ai = {0} for any i ∈ {1, . . . ,m}\(I∪J ), Ai = {0, 1} for any i ∈ I and Ai = {0, 1, 2}
for any i ∈ J . Similarly, the sets ΛI,J

(r,ρ,R) introduced in (3.3) are of the form ΩA
for A with Ai = {0} for any i ∈ {1, . . . ,m} \ (I ∪ J ), Ai = {1} for any i ∈ I and
Ai = {2} for any i ∈ J .

With these positions, the additivity property of the valuation d follows from the
additivity property of the coincidence degree. Moreover, rules (R1) and (R2) are
satisfied since they correspond to formula (3.2). Then, all the above lemmas on
the valuation d apply and, in particular, Lemma A.3 gives precisely formula (3.4).
This completes the proof of Theorem 3.2.

A.2. Second argument. In this second part we present a different combinatorial
argument, in the same spirit of the one adopted in [21, Lemma 4.1].

Let r, ρ, R be three positive real numbers such that 0 < r < ρ < R and let m ≥ 1

be an integer. Recalling the definitions of ΩI,J
(r,ρ,R) and ΛI,J

(r,ρ,R) given in (3.1) and

(3.3) respectively, we note that, for any pair of subset of indices I,J ⊆ {1, . . . ,m}
with I ∩ J = ∅, we have

(A.2) ΩI,J
(r,ρ,R) =

⋃
I′⊆I∪J
J ′⊆J

I′∩J ′=∅

ΛI′,J ′

(r,ρ,R) ∪ΥI,J
(r,ρ,R),

where

ΥI,J
(r,ρ,R) :=

⋃
i∈I∪J

{
u ∈ ΩI,J

(r,ρ,R) : max
I+
i

|u| = r
}
∪

⋃
i∈J

{
u ∈ ΩI,J

(r,ρ,R) : max
I+
i

|u| = ρ
}
.
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We notice that the union in (A.2) is disjoint, since ΛI′,J ′

(r,ρ,R) ∩ ΛI′′,J ′′

(r,ρ,R) = ∅, for

I ′ �= I ′′ or for J ′ �= J ′′. Moreover, we observe that the set of all the pairs (I,J )
with I,J ⊆ {1, . . . ,m} such that I ∩ J = ∅ has cardinality equal to 3m.

Now we are in position to present the following result.

Lemma A.4. Let I,J ⊆ {1, . . . ,m} be two subsets of indices (possibly empty)

such that I ∩ J = ∅. Suppose that the coincidence degrees DL

(
L −Nλ,μ,Ω

I′,J ′

(r,ρ,R))

and DL

(
L−Nλ,μ,Λ

I′,J ′

(r,ρ,R)) are well defined for all I ′ ⊆ I ∪ J and for all J ′ ⊆ J
with I ′ ∩ J ′ = ∅. Assume also

(A.3) DL

(
L−Nλ,μ,Ω

I′,J ′

(r,ρ,R)) = 1, if I ′ = ∅,

and

(A.4) DL

(
L−Nλ,μ,Ω

I′,J ′

(r,ρ,R)) = 0, if I ′ �= ∅.

Then

(A.5) DL

(
L−Nλ,μ,Λ

I,J
(r,ρ,R)) = (−1)#I .

Proof. For simplicity of notation, in this proof we set

ΩI,J = ΩI,J
(r,ρ,R) and ΛI,J = ΛI,J

(r,ρ,R).

First of all, we underline that Ω∅,∅ = Λ∅,∅ and, in view of (A.3), we have that

(A.6) DL

(
L−Nλ,μ,Ω

∅,∅) = DL

(
L−Nλ,μ,Λ

∅,∅) = 1.

Hence the conclusion is trivially satisfied when I = J = ∅.
Now we consider two arbitrary subsets of indices (possibly empty) such that

I ∪ J �= ∅ and I ∩ J = ∅. We are going to prove formula (A.5) by using an
inductive argument. Instead of a double induction on #I and on #J , it seems
more convenient to introduce the bijection

(i, j) ↔ i+ (m+ 1)j

from the set of couples (i, j) ∈ {0, 1, . . . ,m}2 and the integers 0 ≤ n ≤ m(m + 2),
in order to reduce our argument to a single induction. More precisely, we define

n := #I + (m+ 1)#J ≥ 1

and, for every integer k with 0 ≤ k ≤ n, we introduce the property P(k) which
reads as follows:

P(k): The formula

DL(L−Nλ,μ,Λ
I′,J ′

) = (−1)#I′

holds for each I ′ ⊆ I ∪ J and for each J ′ ⊆ J such that I ′ ∩ J ′ = ∅ and
#I ′ + (m+ 1)#J ′ ≤ k.

In this manner, if we are able to prove P(n), then (A.5) immediately follows.

Verification of P(0). See (A.6).

Verification of P(1). For I ′ = J ′ = ∅ the result is already proved in (A.6). If
I ′ = {i}, with i ∈ I ∪J , and J ′ = ∅, by the additivity property of the coincidence
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degree and hypothesis (A.4), we have

DL(L−Nλ,μ,Λ
I′,J ′

) = DL(L−Nλ,μ,Λ
{i},∅)

= DL(L−Nλ,μ,Ω
{i},∅ \ Λ∅,∅)

= DL(L−Nλ,μ,Ω
{i},∅)−DL(L−Nλ,μ,Λ

∅,∅)

= 0− 1 = −1 = (−1)#I′
.

There are no other possible choices of I ′ and J ′ with #I ′+(m+1)#J ′ ≤ 1 (since
m ≥ 1).

Verification of P(k − 1) ⇒ P(k), for 1 ≤ k ≤ n. Assuming the validity of
P(k − 1) we have that the formula is true for every I ′ ⊆ I ∪ J and for every
J ′ ⊆ J such that I ′ ∩J ′ = ∅ and #I ′ + (m+ 1)#J ′ ≤ k− 1. Therefore, in order
to prove P(k), we have only to check that the formula is true for any possible
choice of I ′ ⊆ I ∪ J and J ′ ⊆ J with I ′ ∩ J ′ = ∅ and such that

(A.7) #I ′ + (m+ 1)#J ′ = k.

We distinguish two cases: either I ′ = ∅ or I ′ �= ∅. As a first instance, let I ′ = ∅
and, in view of (A.7), suppose J ′ �= ∅ and #J ′ = k/(m + 1). By formula (A.2),

Ω∅,J ′
can be written as the disjoint union

Ω∅,J ′
=

⋃
L⊆J ′

K⊆J ′

L∩K=∅

ΛL,K ∪Υ∅,J ′
= Λ∅,J ′ ∪

⋃
L⊆J ′

K�J ′

L∩K=∅

ΛL,K ∪Υ∅,J ′
.

We observe that there is no solution of Lu = Nλ,μu with u ∈ Υ∅,J ′
, due to

the fact that the degree is well defined on the sets ΛL,K. Consequently, since
#L+ (m+ 1)#K ≤ k − 1 if K � J ′, by (A.3) and by the inductive hypothesis, we
obtain

DL(L−Nλ,μ,Λ
∅,J ′

) = DL(L−Nλ,μ,Ω
∅,J ′

)−
∑
L⊆J ′

K�J ′

L∩K=∅

DL(L−Nλ,μ,Λ
L,K)

= 1−
∑
L⊆J ′

K�J ′

L∩K=∅

(−1)#L.

Now we observe that ∑
L⊆J ′

K�J ′

L∩K=∅

(−1)#L =
∑

K�J ′

∑
L⊆J ′\K

(−1)#L = 0,

due to the fact that in a finite set there are so many subsets with even cardinality
as there are with odd cardinality. Thus we conclude that

DL(L−Nλ,μ,Λ
∅,J ′

) = 1 = (−1)#I′
.
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As a second instance, let I ′ �= ∅. Using (A.2), we can write ΩI′,J ′
as the disjoint

union

ΩI′,J ′
=

⋃
L⊆I′∪J ′

K⊆J ′

L∩K=∅

ΛL,K ∪ΥI′,J ′
= ΛI′,J ′ ∪

⋃
L⊆I′∪J ′

K⊆J ′

L∩K=∅
(L,K) �=(I′,J ′)

ΛL,K ∪ΥI′,J ′
.

We observe that there is no solution of Lu = Nλ,μu with u ∈ ΥI′,J ′
, due to

the fact that the degree is well defined on the sets ΛL,K. Consequently, since
#L+ (m+1)#K ≤ k− 1, if K � J ′ or if K = J ′ and L � I ′, by (A.4) and by the
inductive hypothesis, we obtain

DL(L−Nλ,μ,Λ
I′,J ′

)

= DL(L−Nλ,μ,Ω
I′,J ′

)−
∑

L⊆I′∪J ′

K⊆J ′

L∩K=∅
(L,K) �=(I′,J ′)

DL(L−Nλ,μ,Λ
L,K)

= 0−
∑

L⊆I′∪J ′

K⊆J ′

L∩K=∅
(L,K) �=(I′,J ′)

(−1)#L = (−1)#I′ −
∑

L⊆I′∪J ′

K⊆J ′

L∩K=∅

(−1)#L = (−1)#I′
,

observing, as above, that∑
L⊆I′∪J ′

K⊆J ′

L∩K=∅

(−1)#L =
∑

K⊆J ′

∑
L⊆I′∪(J ′\K)

(−1)#L = 0.

Then P(k) is proved and the lemma follows. �

Now, since (A.5) is exactly formula (3.4), in order to complete the proof of The-
orem 3.2 we have only to check that the degrees are well defined and assumptions
(A.3) and (A.4) in the above combinatorial lemma are satisfied. All these requests
are obviously guaranteed by the discussion in Section 3.1 and by formula (3.2).
Then Lemma A.4 applies and this completes the proof of Theorem 3.2.
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Supérieures [Seminar on Higher Mathematics], vol. 94, Presses de l’Université de Montréal,
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