Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Generic solutions of equations with iterated exponentials


Authors: P. D’Aquino, A. Fornasiero and G. Terzo
Journal: Trans. Amer. Math. Soc. 370 (2018), 1393-1407
MSC (2010): Primary 03C60; Secondary 12L12, 11D61, 11U09
DOI: https://doi.org/10.1090/tran/7206
Published electronically: September 19, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study solutions of exponential polynomials over the complex field. Assuming Schanuel's Conjecture we prove that certain polynomials of the form

$\displaystyle p(z, e^z, e^{e^z}, e^{e^{e^{z}}}) = 0 $

have generic solutions in $ \mathbb{C}$.

References [Enhancements On Off] (What's this?)

  • [1] James Ax, On Schanuel's conjectures, Ann. of Math. (2) 93 (1971), 252-268. MR 0277482, https://doi.org/10.2307/1970774
  • [2] W. D. Brownawell and D. W. Masser, Zero estimates with moving targets, J. Lond. Math. Soc. (2) 95 (2017), no. 2, 441-454. MR 3656276, https://doi.org/10.1112/jlms.12014
  • [3] Paola D'Aquino, Angus Macintyre, and Giuseppina Terzo, From Schanuel's conjecture to Shapiro's conjecture, Comment. Math. Helv. 89 (2014), no. 3, 597-616. MR 3260843, https://doi.org/10.4171/CMH/328
  • [4] P. D'Aquino, A. Macintyre, and G. Terzo, Schanuel Nullstellensatz for Zilber fields, Fund. Math. 207 (2010), no. 2, 123-143. MR 2586007, https://doi.org/10.4064/fm207-2-2
  • [5] P. D'Aquino, A. Macintyre, and G. Terzo, Comparing $ \mathbb{C}$ and Zilber's exponential fields: zero sets of exponential polynomials, J. Inst. Math. Jussieu 15 (2016), no. 1, 71-84. MR 3427594, https://doi.org/10.1017/S1474748014000231
  • [6] Lou van den Dries, Exponential rings, exponential polynomials and exponential functions, Pacific J. Math. 113 (1984), no. 1, 51-66. MR 745594
  • [7] J. E. Dennis Jr. and Robert B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, Classics in Applied Mathematics, vol. 16, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. Corrected reprint of the 1983 original. MR 1376139
  • [8] Ayhan Günaydin, Rational solutions of polynomial-exponential equations, Int. J. Number Theory 8 (2012), no. 6, 1391-1399. MR 2965756, https://doi.org/10.1142/S1793042112500820
  • [9] C. Ward Henson and Lee A. Rubel, Some applications of Nevanlinna theory to mathematical logic: identities of exponential functions, Trans. Amer. Math. Soc. 282 (1984), no. 1, 1-32. MR 728700, https://doi.org/10.2307/1999575
  • [10] Ehud Hrushovski, Strongly minimal expansions of algebraically closed fields, Israel J. Math. 79 (1992), no. 2-3, 129-151. MR 1248909, https://doi.org/10.1007/BF02808211
  • [11] H. Katzberg, Complex exponential terms with only finitely many zeros, Seminarberichte, Humboldt-Univ. Berlin, Sekt. Math. 49 (1983), 68-72.
  • [12] Jonathan Kirby, Finitely presented exponential fields, Algebra Number Theory 7 (2013), no. 4, 943-980. MR 3095232, https://doi.org/10.2140/ant.2013.7.943
  • [13] Jonathan Kirby, Angus Macintyre, and Alf Onshuus, The algebraic numbers definable in various exponential fields, J. Inst. Math. Jussieu 11 (2012), no. 4, 825-834. MR 2979823, https://doi.org/10.1017/S1474748012000047
  • [14] Serge Lang, Complex analysis, 3rd ed., Graduate Texts in Mathematics, vol. 103, Springer-Verlag, New York, 1993. MR 1199813
  • [15] Angus Macintyre, Schanuel's conjecture and free exponential rings, Ann. Pure Appl. Logic 51 (1991), no. 3, 241-246. MR 1098783, https://doi.org/10.1016/0168-0072(91)90017-G
  • [16] Angus Macintyre and A. J. Wilkie, On the decidability of the real exponential field, Kreiseliana, A K Peters, Wellesley, MA, 1996, pp. 441-467. MR 1435773
  • [17] V. Mantova, Polynomial-exponential equations and Zilber's conjecture, with an appendix by Mantova and U. Zannier, Bull. Lond. Math. Soc. 48 (2016), no. 2, 309-320. MR 3483068, https://doi.org/10.1112/blms/bdv096
  • [18] David Marker, A remark on Zilber's pseudoexponentiation, J. Symbolic Logic 71 (2006), no. 3, 791-798. MR 2250821, https://doi.org/10.2178/jsl/1154698577
  • [19] D. Masser, Notes, manuscript.
  • [20] Wolfgang M. Schmidt, Equations over finite fields. An elementary approach, Lecture Notes in Mathematics, Vol. 536, Springer-Verlag, Berlin-New York, 1976. MR 0429733
  • [21] Ahuva C. Shkop, Henson and Rubel's theorem for Zilber's pseudoexponentiation, J. Symbolic Logic 77 (2012), no. 2, 423-432. MR 2963014, https://doi.org/10.2178/jsl/1333566630
  • [22] Giuseppina Terzo, Some consequences of Schanuel's conjecture in exponential rings, Comm. Algebra 36 (2008), no. 3, 1171-1189. MR 2394281, https://doi.org/10.1080/00927870701410694
  • [23] B. Zilber, Pseudo-exponentiation on algebraically closed fields of characteristic zero, Ann. Pure Appl. Logic 132 (2005), no. 1, 67-95. MR 2102856, https://doi.org/10.1016/j.apal.2004.07.001

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 03C60, 12L12, 11D61, 11U09

Retrieve articles in all journals with MSC (2010): 03C60, 12L12, 11D61, 11U09


Additional Information

P. D’Aquino
Affiliation: Dipartimento di Matematica e Fisica, Università della Campania “L. Vanvitelli”, Viale Lincoln 5, 81100 Caserta, Italy
Email: paola.daquino@unicampania.it

A. Fornasiero
Affiliation: Einstein Institute of Mathematics, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, 9190401, Israel
Email: antongiulio.fornasiero@gmail.com

G. Terzo
Affiliation: Dipartimento di Matematica e Fisica, Università della Campania “L. Vanvitelli”, Viale Lincoln 5, 81100 Caserta, Italy
Email: giuseppina.terzo@unicampania.it

DOI: https://doi.org/10.1090/tran/7206
Keywords: Exponential polynomials, generic solution, Schanuel's Conjecture
Received by editor(s): March 29, 2016
Received by editor(s) in revised form: January 12, 2017
Published electronically: September 19, 2017
Additional Notes: The second author was supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 291111. This research is part of project FIRB 2010, Nuovi sviluppi nella Teoria dei Modelli dell’esponenziazione.
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society