Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Anderson-Stark units for $ {\mathbb{F}}_{q}[\theta]$


Authors: Bruno Anglès, Federico Pellarin and Floric Tavares Ribeiro
Journal: Trans. Amer. Math. Soc. 370 (2018), 1603-1627
MSC (2010): Primary 11R58, 11M38; Secondary 11G09
DOI: https://doi.org/10.1090/tran/6994
Published electronically: August 15, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the arithmetic of special values of a new class of $ L$-functions recently introduced by the second author. We prove that these special values are encoded in some particular polynomials which we call Anderson-Stark units. We then use these Anderson-Stark units to prove that $ L$-functions can be expressed as sums of polylogarithms.


References [Enhancements On Off] (What's this?)

  • [And96] Greg W. Anderson, Log-algebraicity of twisted $ A$-harmonic series and special values of $ L$-series in characteristic $ p$, J. Number Theory 60 (1996), no. 1, 165-209. MR 1405732, https://doi.org/10.1006/jnth.1996.0119
  • [AP14] Bruno Anglès and Federico Pellarin, Functional identities for $ L$-series values in positive characteristic, J. Number Theory 142 (2014), 223-251. MR 3208400, https://doi.org/10.1016/j.jnt.2014.03.004
  • [AP15] Bruno Anglès and Federico Pellarin, Universal Gauss-Thakur sums and $ L$-series, Invent. Math. 200 (2015), no. 2, 653-669. MR 3338012, https://doi.org/10.1007/s00222-014-0546-8
  • [APTR16] B. Anglès, F. Pellarin, and F. Tavares Ribeiro, Arithmetic of positive characteristic $ L$-series values in Tate algebras, Compos. Math. 152 (2016), no. 1, 1-61. With an appendix by F. Demeslay. MR 3453387, https://doi.org/10.1112/S0010437X15007563
  • [AT90] Greg W. Anderson and Dinesh S. Thakur, Tensor powers of the Carlitz module and zeta values, Ann. of Math. (2) 132 (1990), no. 1, 159-191. MR 1059938, https://doi.org/10.2307/1971503
  • [Bou64] N. Bourbaki, Éléments de mathématique. Fasc. XXX. Algèbre commutative. Chapitre 5: Entiers. Chapitre 6: Valuations, Actualités Scientifiques et Industrielles, No. 1308, Hermann, Paris, 1964 (French). MR 0194450
  • [BP] W. Dale Brownawell and Matthew A. Papanikolas,
    A rapid introduction to Drinfeld modules, $ t$-modules, and $ t$-motives,
    Preprint.
  • [Dem15] Demeslay,
    Formules de classes en caractéristique positive, Ph.D. Thesis, 2015.
  • [FvdP04] Jean Fresnel and Marius van der Put, Rigid analytic geometry and its applications, Progress in Mathematics, vol. 218, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2014891
  • [Gos96] David Goss, Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 35, Springer-Verlag, Berlin, 1996. MR 1423131
  • [Neu99] Jürgen Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher; With a foreword by G. Harder. MR 1697859
  • [Pap] Matthew A. Papanikolas,
    Log-algebraicity on tensor powers of the Carlitz module and special values of Goss $ L$-functions,
    In preparation.
  • [Pel12] Federico Pellarin, Values of certain $ L$-series in positive characteristic, Ann. of Math. (2) 176 (2012), no. 3, 2055-2093. MR 2979866, https://doi.org/10.4007/annals.2012.176.3.13
  • [Per14a] Rudolph Bronson Perkins, Explicit formulae for $ L$-values in positive characteristic, Math. Z. 278 (2014), no. 1-2, 279-299. MR 3267579, https://doi.org/10.1007/s00209-014-1315-5
  • [Per14b] Rudolph Bronson Perkins, On Pellarin's $ L$-series, Proc. Amer. Math. Soc. 142 (2014), no. 10, 3355-3368. MR 3238413, https://doi.org/10.1090/S0002-9939-2014-12080-6
  • [Ros02] Michael Rosen, Number theory in function fields, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York, 2002. MR 1876657
  • [Tha04] Dinesh S. Thakur, Function field arithmetic, World Scientific Publishing Co., Inc., River Edge, NJ, 2004. MR 2091265

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11R58, 11M38, 11G09

Retrieve articles in all journals with MSC (2010): 11R58, 11M38, 11G09


Additional Information

Bruno Anglès
Affiliation: Normandie Université, Université de Caen Normandie, CNRS UMR 6139, Campus II, Boulevard Maréchal Juin, B.P. 5186, 14032 Caen Cedex, France
Email: bruno.angles@unicaen.fr

Federico Pellarin
Affiliation: Institut Camille Jordan, UMR 5208, Site de Saint-Etienne, 23 rue du Dr. P. Michelon, 42023 Saint-Etienne, France
Email: federico.pellarin@univ-st-etienne.fr

Floric Tavares Ribeiro
Affiliation: Normandie Université, Université de Caen Normandie, CNRS UMR 6139, Campus II, Boulevard Maréchal Juin, B.P. 5186, 14032 Caen Cedex, France
Email: floric.tavares-ribeiro@unicaen.fr

DOI: https://doi.org/10.1090/tran/6994
Received by editor(s): January 27, 2015
Received by editor(s) in revised form: May 20, 2016
Published electronically: August 15, 2017
Additional Notes: The second author was supported by the ANR HAMOT
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society