Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Connections between unit-regularity, regularity, cleanness, and strong cleanness of elements and rings


Authors: Pace P. Nielsen and Janez Šter
Journal: Trans. Amer. Math. Soc. 370 (2018), 1759-1782
MSC (2010): Primary 16E50; Secondary 16D70, 16S50, 16U99
DOI: https://doi.org/10.1090/tran/7080
Published electronically: November 16, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct an example of a unit-regular ring which is not
strongly clean, answering an open question of Nicholson. We also characterize clean matrices with a zero column, and this allows us to describe an interesting connection between unit-regular elements and clean elements. Next we study in arbitrary rings those elements whose powers are regular, and provide a method for constructing inner inverses which satisfy many additional strong relations. As a corollary we show that if each of the powers $ a,a^2,\ldots , a^n$ is a regular element in some ring $ R$ (for some $ n\geq 1$), then there exists $ w\in R$ such that $ a^k w^k a^k=a^k$ and $ w^k a^k w^k=w^k$ for $ 1\leq k\leq n$. Similar statements are also obtained for unit-regular elements. The paper ends with a large number of examples elucidating further connections (and disconnections) between cleanness, regularity, and unit-regularity.


References [Enhancements On Off] (What's this?)

  • [1] Pere Ara, Strongly $ \pi$-regular rings have stable range one, Proc. Amer. Math. Soc. 124 (1996), no. 11, 3293-3298. MR 1343679, https://doi.org/10.1090/S0002-9939-96-03473-9
  • [2] Pere Ara and Kevin C. O'Meara, The nilpotent regular element problem, Canad. Math. Bull. 59 (2016), no. 3, 461-471. MR 3563728, https://doi.org/10.4153/CMB-2016-005-8
  • [3] K. I. Beidar, K. C. O'Meara, and R. M. Raphael, On uniform diagonalisation of matrices over regular rings and one-accessible regular algebras, Comm. Algebra 32 (2004), no. 9, 3543-3562. MR 2097478, https://doi.org/10.1081/AGB-120039630
  • [4] George M. Bergman, Strong inner inverses in endomorphism rings of vector spaces, Publicacions Matematiques, to appear (2017).
  • [5] V. P. Camillo, D. Khurana, T. Y. Lam, W. K. Nicholson, and Y. Zhou, Continuous modules are clean, J. Algebra 304 (2006), no. 1, 94-111. MR 2255822, https://doi.org/10.1016/j.jalgebra.2006.06.032
  • [6] Victor Camillo, Thomas J. Dorsey, and Pace P. Nielsen, Dedekind-finite strongly clean rings, Comm. Algebra 42 (2014), no. 4, 1619-1629. MR 3169656, https://doi.org/10.1080/00927872.2012.746976
  • [7] Victor Camillo and Pace P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615. MR 2365335, https://doi.org/10.1016/j.jpaa.2007.06.010
  • [8] Victor P. Camillo and Dinesh Khurana, A characterization of unit regular rings, Comm. Algebra 29 (2001), no. 5, 2293-2295. MR 1837978, https://doi.org/10.1081/AGB-100002185
  • [9] Victor P. Camillo and Hua-Ping Yu, Exchange rings, units and idempotents, Comm. Algebra 22 (1994), no. 12, 4737-4749. MR 1285703, https://doi.org/10.1080/00927879408825098
  • [10] Peter Crawley and Bjarni Jónsson, Direct decompositions of algebraic systems, Bull. Amer. Math. Soc. 69 (1963), 541-547. MR 0156808, https://doi.org/10.1090/S0002-9904-1963-10991-X
  • [11] Alexander J. Diesl, Samuel J. Dittmer, and Pace P. Nielsen, Idempotent lifting and ring extensions, J. Algebra Appl. 15 (2016), no. 6, 1650112, 16. MR 3479816, https://doi.org/10.1142/S0219498816501127
  • [12] Gertrude Ehrlich, Unit-regular rings, Portugal. Math. 27 (1968), 209-212. MR 0266962
  • [13] Gertrude Ehrlich, Units and one-sided units in regular rings, Trans. Amer. Math. Soc. 216 (1976), 81-90. MR 0387340, https://doi.org/10.2307/1997686
  • [14] K. R. Goodearl, von Neumann regular rings, 2nd ed., Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1991. MR 1150975
  • [15] John Hannah and K. C. O'Meara, Products of idempotents in regular rings. II, J. Algebra 123 (1989), no. 1, 223-239. MR 1000485, https://doi.org/10.1016/0021-8693(89)90044-6
  • [16] Dinesh Khurana, Unit-regularity of regular nilpotent elements, Algebr. Represent. Theory 19 (2016), no. 3, 641-644. MR 3503235, https://doi.org/10.1007/s10468-015-9592-1
  • [17] Dinesh Khurana and T. Y. Lam, Clean matrices and unit-regular matrices, J. Algebra 280 (2004), no. 2, 683-698. MR 2090058, https://doi.org/10.1016/j.jalgebra.2004.04.019
  • [18] T. Y. Lam, Exercises in classical ring theory, 2nd ed., Problem Books in Mathematics, Springer-Verlag, New York, 2003. MR 2003255
  • [19] W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278. MR 0439876, https://doi.org/10.2307/1998510
  • [20] W. K. Nicholson, Strongly clean rings and Fitting's lemma, Comm. Algebra 27 (1999), no. 8, 3583-3592. MR 1699586, https://doi.org/10.1080/00927879908826649
  • [21] Kevin C. O'Meara, A new setting for constructing von Neumann regular rings, Comm. Algebra 45 (2017), no. 5, 2186-2194. MR 3582854, https://doi.org/10.1080/00927872.2016.1226886
  • [22] Janez Šter, Corner rings of a clean ring need not be clean, Comm. Algebra 40 (2012), no. 5, 1595-1604. MR 2924469, https://doi.org/10.1080/00927872.2011.551901
  • [23] Zhou Wang, Jianlong Chen, Dinesh Khurana, and Tsit-Yuen Lam, Rings of idempotent stable range one, Algebr. Represent. Theory 15 (2012), no. 1, 195-200. MR 2872487, https://doi.org/10.1007/s10468-011-9276-4
  • [24] R. B. Warfield Jr., Exchange rings and decompositions of modules, Math. Ann. 199 (1972), 31-36. MR 0332893, https://doi.org/10.1007/BF01419573
  • [25] Hongbo Zhang, On strongly clean modules, Comm. Algebra 37 (2009), no. 4, 1420-1427. MR 2510991, https://doi.org/10.1080/00927870802251047

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 16E50, 16D70, 16S50, 16U99

Retrieve articles in all journals with MSC (2010): 16E50, 16D70, 16S50, 16U99


Additional Information

Pace P. Nielsen
Affiliation: Department of Mathematics, Brigham Young University, Provo, Utah 84602
Email: pace@math.byu.edu

Janez Šter
Affiliation: Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 21, 1000 Ljubljana, Slovenia
Email: janez.ster@fmf.uni-lj.si

DOI: https://doi.org/10.1090/tran/7080
Keywords: (Strongly) clean element/ring, (unit-)regular element/ring
Received by editor(s): October 19, 2015
Received by editor(s) in revised form: May 30, 2016
Published electronically: November 16, 2017
Additional Notes: This work was partially supported by a grant from the Simons Foundation (#315828 to the first author). The project was sponsored by the National Security Agency under Grant No. H98230-16-1-0048.
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society