Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 


Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations. I

Author: Dario Bambusi
Journal: Trans. Amer. Math. Soc. 370 (2018), 1823-1865
MSC (2010): Primary 35J10, 35S05, 37K55
Published electronically: October 24, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the Schrödinger equation on $ \mathbb{R}$ with a polynomial potential behaving as $ x^{2l}$ at infinity, $ 1\leq l\in \mathbb{N}$, and with a small time quasiperiodic perturbation. We prove that if the symbol of the perturbation grows at most like $ (\xi ^2+x^{2l})^{\beta /(2l)}$, with $ \beta <l+1$, then the system is reducible. Some extensions including cases with $ \beta =2l$ are also proved. The result implies boundedness of Sobolev norms. The proof is based on pseudodifferential calculus and KAM theory

References [Enhancements On Off] (What's this?)

  • [Bam97] Dario Bambusi, Long time stability of some small amplitude solutions in nonlinear Schrödinger equations, Comm. Math. Phys. 189 (1997), no. 1, 205-226. MR 1478536,
  • [BBM14] Pietro Baldi, Massimiliano Berti, and Riccardo Montalto, KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann. 359 (2014), no. 1-2, 471-536. MR 3201904,
  • [BG93] Dario Bambusi and Antonio Giorgilli, Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems, J. Statist. Phys. 71 (1993), no. 3-4, 569-606. MR 1219023,
  • [BG01] Dario Bambusi and Sandro Graffi, Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Comm. Math. Phys. 219 (2001), no. 2, 465-480. MR 1833810,
  • [BGP99] Dario Bambusi, Sandro Graffi, and Thierry Paul, Normal forms and quantization formulae, Comm. Math. Phys. 207 (1999), no. 1, 173-195. MR 1724855,
  • [BM16a] D. Bambusi and A. Maspero, Freezing of energy of a soliton in an external potential, Comm. Math. Phys. 344 (2016), no. 1, 155-191. MR 3493141,
  • [BM16b] M. Berti and R. Montalto, Quasi-periodic standing wave solutions of gravity-capillary water waves, arXiv:1602.02411 [math.AP] (2016).
  • [Com87] M. Combescure, The quantum stability problem for time-periodic perturbations of the harmonic oscillator, Ann. Inst. H. Poincaré Phys. Théor. 47 (1987), no. 1, 63-83 (English, with French summary). MR 912757
  • [Del14] J.-M. Delort, Growth of Sobolev norms for solutions of time dependent Schrödinger operators with harmonic oscillator potential, Comm. Partial Differential Equations 39 (2014), no. 1, 1-33. MR 3169778,
  • [DLŠV02] P. Duclos, O. Lev, P. Šťovíček, and M. Vittot, Weakly regular Floquet Hamiltonians with pure point spectrum, Rev. Math. Phys. 14 (2002), no. 6, 531-568. MR 1915516,
  • [DŠ96] P. Duclos and P. Šťovíček, Floquet Hamiltonians with pure point spectrum, Comm. Math. Phys. 177 (1996), no. 2, 327-347. MR 1384138
  • [EK09] Håkan L. Eliasson and Sergei B. Kuksin, On reducibility of Schrödinger equations with quasiperiodic in time potentials, Comm. Math. Phys. 286 (2009), no. 1, 125-135. MR 2470926,
  • [FGJS04] J. Fröhlich, S. Gustafson, B. L. G. Jonsson, and I. M. Sigal, Solitary wave dynamics in an external potential, Comm. Math. Phys. 250 (2004), no. 3, 613-642. MR 2094474,
  • [FP15] Roberto Feola and Michela Procesi, Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations, J. Differential Equations 259 (2015), no. 7, 3389-3447. MR 3360677,
  • [GP87] Sandro Graffi and Thierry Paul, The Schrödinger equation and canonical perturbation theory, Comm. Math. Phys. 108 (1987), no. 1, 25-40. MR 872139
  • [GP16] B. Grébert and E. Paturel, On reducibility of quantum harmonic oscillator on $ {\mathbb{R}}^d$ with quasiperiodic in time potential, arXiv:1603.07455 [math.AP] (2016).
  • [GT11] Benoît Grébert and Laurent Thomann, KAM for the quantum harmonic oscillator, Comm. Math. Phys. 307 (2011), no. 2, 383-427. MR 2837120,
  • [GY00] Sandro Graffi and Kenji Yajima, Absolute continuity of the Floquet spectrum for a nonlinearly forced harmonic oscillator, Comm. Math. Phys. 215 (2000), no. 2, 245-250. MR 1799847,
  • [HR82a] B. Helffer and D. Robert, Asymptotique des niveaux d'énergie pour des hamiltoniens à un degré de liberté, Duke Math. J. 49 (1982), no. 4, 853-868 (French). MR 683006
  • [HR82b] Bernard Helffer and Didier Robert, Propriétés asymptotiques du spectre d'opérateurs pseudodifférentiels sur $ {\bf R}^{n}$, Comm. Partial Differential Equations 7 (1982), no. 7, 795-882 (French). MR 662451,
  • [IPT05] G. Iooss, P. I. Plotnikov, and J. F. Toland, Standing waves on an infinitely deep perfect fluid under gravity, Arch. Ration. Mech. Anal. 177 (2005), no. 3, 367-478. MR 2187619,
  • [LY10] Jianjun Liu and Xiaoping Yuan, Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient, Comm. Pure Appl. Math. 63 (2010), no. 9, 1145-1172. MR 2675484,
  • [Mon14] Pietro Baldi, Massimiliano Berti, and Riccardo Montalto, KAM for quasi-linear KdV, C. R. Math. Acad. Sci. Paris 352 (2014), no. 7-8, 603-607. MR 3237812,
  • [MR16] A. Maspero and D. Robert, On time dependent Schrödinger equations: global well-posedness and growth of Sobolev norms, arXiv:1610.03359 [math.AP] (2016).
  • [Pös96] Jürgen Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), no. 1, 119-148. MR 1401420
  • [PT01] P. I. Plotnikov and J. F. Toland, Nash-Moser theory for standing water waves, Arch. Ration. Mech. Anal. 159 (2001), no. 1, 1-83. MR 1854060,
  • [Sal04] Dietmar A. Salamon, The Kolmogorov-Arnold-Moser theorem, Math. Phys. Electron. J. 10 (2004), Paper 3, 37. MR 2111297
  • [Ste70] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • [Wan08] W.-M. Wang, Pure point spectrum of the Floquet Hamiltonian for the quantum harmonic oscillator under time quasi-periodic perturbations, Comm. Math. Phys. 277 (2008), no. 2, 459-496. MR 2358292,
  • [YZ13] Xiaoping Yuan and Kangkang Zhang, A reduction theorem for time dependent Schrödinger operator with finite differentiable unbounded perturbation, J. Math. Phys. 54 (2013), no. 5, 052701, 23. MR 3098932,

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35J10, 35S05, 37K55

Retrieve articles in all journals with MSC (2010): 35J10, 35S05, 37K55

Additional Information

Dario Bambusi
Affiliation: Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, I-20133 Milano, Italy

Received by editor(s): June 14, 2016
Published electronically: October 24, 2017
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society