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HARDY-HODGE DECOMPOSITION OF VECTOR FIELDS IN R
n

LAURENT BARATCHART, PEI DANG, AND TAO QIAN

Abstract. We prove that an Rn+1-valued vector field on Rn is the sum of the
traces of two harmonic gradients, one in each component of Rn+1 \ Rn, and
of an Rn-valued divergence free vector field. We apply this to the description
of vanishing potentials in divergence form. The results are stated in terms of
Clifford Hardy spaces, the structure of which is important for our study.

1. Introduction

Decomposing a complex function on the line as the sum of the traces of two
holomorphic functions, one in each half plane cut out by the line, is a classical
topic from complex analysis that lies at the root of many developments in har-
monic analysis. Indeed, such a decomposition features the Hilbert transformation,
which is the prototype of a Calderòn-Zygmund operator, whose C1,α and Lp bound-
edness was historically the starting point of elliptic regularity theory [6, 19, 20, 22].
This decomposition is also a cornerstone of solutions to Riemann-Hilbert problems,
which are especially meaningful in spectral theory [5] and have provided in recent
years striking advances in the theory of orthogonal polynomials [4]. Moreover, it is
instrumental for defining and studying Hankel and Toeplitz operators, which play
a fundamental role in complex approximation and were successfully applied to is-
sues of basic importance in control and signal analysis [3, 13, 14, 16]. Besides, in a
Hilbertian framework, the decomposition was used to obtain sparse representations
of analytic signals of scalar-valued signals in various classical contexts ([18] and
subsequent papers by these authors).

Specifically, given a complex-valued function f ∈ Lp(R), 1 < p < ∞, one has

(1.1) f = f+ + f−,

where

f±(x) = lim
y→0±

±1

2πi

∫ ∞

−∞

f(t)

t− (x+ iy)
dt,

where f± are, respectively, nontangential boundary limit functions of holomorphic
functions of one complex variable in, respectively, the Hardy spaces Hp(C±) of the
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upper and lower half planes. The Hardy space functions are given by

f±(z) =
±1

2πi

∫ ∞

−∞

f(t)

t− z
dt, z = x+ iy, ±y > 0;

see [6].
Now, under the standard identification C ∼ R2, a holomorphic function may be

regarded as the gradient of a harmonic function, and this way (1.1) says that an
R2-valued vector field on R of Lp class may be decomposed as the sum of the traces
of two harmonic gradients, arising from harmonic functions in the upper and lower
half plane respectively. The question that we raise in this paper is whether such
a decomposition is possible in higher dimension, namely whether a vector field in
Lp(Rn,Rn+1) is the sum of the traces of two gradients of functions harmonic in
the two half-spaces cut out by R

n in R
n+1. The answer is no in general, but the

next best thing is that a decomposition becomes possible if a third summand is
allowed, which takes the form of a divergence free vector field tangent to Rn. This
fact was observed in [1] when n = 2 and used to characterize silent magnetization
distributions on a plane. We presently carry this decomposition over to every n.
When projected onto Rn, it yields back the classical Hodge decomposition of an
Lp tangent vector field on Rn as the sum of a gradient and of a divergence free
component. This is why we call our decomposition of Lp(Rn,Rn+1) vector fields
the Hardy-Hodge decomposition.

Formally the decomposition can be surmised from Hodge theory for 1-currents
supported on a hypersurface in ambient space [7, Sec. 2.8], but the estimates needed
to control Lp-norms of the objects involved pertain to the Calderòn-Zygmund the-
ory. In this connection, it would be pedantic to introduce currents to speak of
vector fields on linear submanifolds, but it is convenient to use the formalism of
Clifford analysis, which provides us with a substitute for complex variables and is
well adapted to handle higher dimensional singular integrals. In fact, Clifford anal-
ysis is also suited to extend the result to vector fields on more general submanifolds,
although such a generalization lies beyond the scope of the present paper.

The latter is organized as follows. In Section 2 we recall some basic facts from
Clifford analysis and Clifford Hardy spaces, most of which can be found in [8],
and we study the structure of boundary functions in detail, along with density
properties of rational-like functions. In Sections 3 and 4, we prove the Hardy-
Hodge decomposition and some variants thereof. Finally, in Section 5, we discuss
an application to nonuniqueness for inverse potential problems in divergence form.

2. Preliminaries

Let n ≥ 3 be an integer and Φ be either the real field R or the complex field
C. Hereafter, we put Lp(Rn, E) for the familiar Lebesgue space of functions on Rn

with values in a Banach space E (typically E = Φm) whose norm to the p-th power
is integrable, and we often write Lp(Rn) for simplicity if E is understood from the
context.

We adopt standard notation in Clifford analysis; see [8]. In particular, we denote
by Cl(n,Φ) the Clifford algebra generated over Φ by e1, · · · , en with e0 = 1
and eiej + ejei = −2δij , i, j = 1, · · · , n. We indicate with S the collection of
subsets of {1, · · · , n}. Then, the elements of the canonical basis of Cl(n,Φ), viewed
as a vector space over Φ, are denoted as eS , S ∈ S, where eS = ej1 · · · ejk if
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S = {1 ≤ j1 < · · · < jk ≤ n}. A generic member of Cl(n,Φ) can thus be written
as x =

∑
S∈S xSeS with xS ∈ Φ. When S is empty, we write e∅ = e0 = 1.

The conjugate of x, denoted as x, is defined to be
∑

S∈S (−1)|S|xSeS , where |S|
indicates the cardinality of S. By convention, a 0-form is a scalar. A k-form is
a sum

∑
S∈Sk

xSeS where Sk indicates those members of S with cardinality k.

Clearly, Cl(n,Φ) is a 2n-dimensional linear space over Φ. A 1-form is also called
a vector, denoted with an underscore: x = x1e1 + · · · + xnen. Clifford vectors are
identified with Euclidean vectors in R

n. The sum of a 0-form and a 1-form is called
a para-vector, and if x is a para-vector we let x be its vector part: x = x0e0 + x.
This is consistent with our previous notation for vectors. The norm of x ∈ Cl(n,Φ)
is defined to be |x| = (

∑
S∈S |xS |2)1/2, which is derived from the inner product

〈x, y〉 =
∑

S∈S xSyS . If both x, y are para-vectors, then their Clifford product
xy = −〈x, y〉 + x ∧ y, where the exterior product x ∧ y is a 2-form similar to the
exterior product of differential forms from geometry:

x ∧ y =
∑
j<k

(xjyk − xkyj)ejek.

Let Rn
1 = {x = x0+x | x0 ∈ R, x ∈ R

n}, Rn
1,± = {x = x0+x | ±x0 > 0, x ∈ R

n},
and R

n+1
± = {x = x+ xn+1en+1 | ± xn+1 > 0}, noting that Rn

1 ,R
n
1,± are included

in Cl(n,R) while R
n+1
± is contained in Rn+1 ⊂ Cl(n+ 1,R) (via the identification

of Clifford vectors with Euclidean vectors). For k = 0, · · · , n+ 1, we introduce the
partial derivatives ∂k = ∂/∂xk

and subsequently we define

(2.2)
D0 = ∂0, Dn = e1∂1 + · · ·+ en∂n,

D = D0 +Dn, Dn+1 = e1∂1 + · · ·+ en∂n + en+1∂n+1.

A Cl(n,Φ) or Cl(n + 1,Φ)-valued function f such that Df = 0 (fD = 0) or
Dn+1f = 0 (fDn+1 = 0) on an open set of Ω ⊂ Rn

1 or Ω ⊂ Rn+1 is called left-
monogenic (right-monogenic) on Ω. By convention, coordinates in the case of D are
denoted by x0, · · · , xn, whereas in the case of Dn+1 they are written x1, · · · , xn+1.
If a function is both left- and right-monogenic, we call it two-sided-monogenic.
Let us stress that when applying the differential operators (2.2), the partials ∂j
commute with the ek but the ej do not, so that it generally matters whether the
operator gets applied from the left or the right.

Note that (D0−Dn)D = Δ (resp. D2
n+1 = −Δ) where Δ =

∑n
j=0 ∂

2
xj

(resp. Δ =∑n
j=1 ∂

2
xj
) is the ordinary Laplacian. Therefore left- or right-monogenic functions

have harmonic components; in particular they are real analytic on Ω and there is
no difference being monogenic in the distributional or in the strong sense. When
f is para-vector-valued in Cl(n,Φ) and we write f = f0 + f1e1 + · · · + fnen, it is
readily checked that Df = 0 if and only if
(2.3)

∂0f0 =
n∑

j=1

∂jfj with ∂jfk = ∂kfj and ∂0fj = −∂jf0 for 1 ≤ j < k ≤ n,

and similarly when fD = 0. In particular, a vector or para-vector-valued function
which is left-monogenic must also be right-monogenic. In the same manner, when
f is vector valued in Cl(n + 1,Φ) with f = f1e1 + · · · + fn+1en+1, we have that
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Dn+1f = 0 if and only if

(2.4)

n+1∑
j=1

∂jfj = 0 and ∂jfk − ∂kfj = 0 for 1 ≤ j < k ≤ n+ 1,

and the same if fDn+1 = 0. Thus, vector-valued left-monogenic functions are
right-monogenic.

By (2.3), a para-vector-valued function f = f0 + f1e1 + · · ·+ fnen, where the fj
are real valued, is monogenic if and only if (−f0, f1, · · · , fn) is a harmonic gradient,
meaning that it is the gradient of a harmonic function. The components of a
harmonic gradient are sometimes referred to as a conjugate harmonic system, or
a Riesz system of functions; cf. [21]. When Rn

1 gets identified with Rn+1, the
fact that (−f0, f1, · · · , fn) is a harmonic gradient amounts to saying that f =
f0− f1e1− · · ·− fnen is a harmonic gradient. Likewise, it follows from (2.4) that a
vector-valued function in Cl(n+1,R), say f = f1e1+· · ·+fn+1en+1, is monogenic if
and only if (f1, · · · , fn+1) is a harmonic gradient. Identifying vectors in Cl(n+1,R)
with R

n+1, we simply say in this case that f is a harmonic gradient.
Let g : Rn

1,± → Rn
1 . For 1 < p < ∞, we say g belongs to the Hardy space

Hp(Rn
1,±,R

n
1 ) if Dg = 0 in Rn

1,± and

‖g‖p
Hp

±
� sup

±x0>0

∫
Rn

|g(x0 + x)|pdx < ∞.(2.5)

We refer to the above Hardy spaces as being of para-vector type, or also of inho-
mogeneous type. Thus, g ∈ Hp(Rn

1,±,R
n
1 ) if and only if g is a harmonic gradient

which moreover satisfies the p-norm boundedness (2.5) in the relevant half-space.
Equivalently, since each of the functions composing a conjugate harmonic system
is harmonic, it follows from (2.5) and standard estimates on harmonic functions
(see e.g. [21, Ch. II, Thm. 3.7 and eqn. (3.18)]) that a para-vector-valued mono-
genic function in Rn

1,± lies in Hp(Rn
1,±,R

n
1 ) if and only if the nontangential maximal

function given by

(2.6) Mαg(x) � sup
x0+x∈Γα(x)

|g(x0 + x)|

lies in Lp(Rn,R) with equivalence of norms: ‖g‖Hp
±
≤ ‖Mαg‖Lp(Rn) ≤ Cα‖g‖Hp

±
.

Here, to each α > 0 and x ∈ Rn, the notation Γα(x) stands for the cone

Γα(x) = {y0 + y ∈ R
n
1,±, |y − x| < α|y0|},

and the precise value of α is irrelevant except that the constants will depend on it.
Likewise, for g : Rn+1

± → R
n+1 ⊂ Cl(n + 1,R) and 1 < p < ∞, we say that g

belongs to the Hardy space Hp(Rn+1
± ,Rn+1) if Dn+1g = 0 in the half-space R

n+1
±

and

‖g‖Hp
±,h

= sup
±xn+1>0

∫
Rn

|g(x+ xn+1en+1)|pdx < ∞.(2.7)

Note that in the previous equation x refers to a vector in Cl(n,R) viewed as a
vector in Cl(n + 1,R) whose (n + 1)-th component is zero. We refer to the latter
Hardy spaces as being of vector type or homogeneous type, which is the reason
for the subscript “h” in the notation for the norm. Thus, we have that f =
f1e1+ · · ·+fn+1en+1 lies in Hp(Rn+1

± ,Rn+1) if and only if it is a harmonic gradient
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in R
n+1
± satisfying the p-boundedness condition (2.7). The latter is again equivalent

to the Lp boundedness on Rn of the nontangential maximal function

(2.8) Mα,hg(x) � sup
x+xn+1en+1∈Γα,h(x)

|g(x+ xn+1en+1)|,

where this time

Γα,h(x) = {y + yn+1en+1 ∈ R
n+1
± , |y − x| < α|yn+1|}.

In fact the passage from nonhomogeneous to homogeneous Hardy spaces is rather
mechanical, trading x0 and 1 for xn+1 and en+1 while changing g0 into −gn+1.

Next, recall the local Fatou theorem asserting that a harmonic function in R
n+1
+

which is nontangentially bounded at almost every point of a set G ⊂ Rn has a
nontangential limit at almost every point of G. Here, nontangential refers to the
fact that bounds and limits are sought in cones Γα,h(x) for arbitrary but fixed
α > 0; see [21, Thm. 3.19]. In view of (2.5) and (2.7), it follows from the local
Fatou theorem that each component of a Hardy function (resp. homogeneous Hardy
function) has a nontangential limit at almost every point of Rn ⊂ Cl(n,R) (resp.
R

n×{0} ⊂ R
n+1 ⊂ Cl(n+1,R)). This defines boundary values for such functions.

Now, it is an important and peculiar property of left- or right-monogenic functions
that they can be recovered as Cauchy integrals of their boundary values; see [8, Cor.
3.20] and [11, 12]. Specifically, let us discuss the case of left-monogenic Cl(n,R)-
valued functions on R

n
1,+ as a prototypical example. If g is such a function and if

Mαg ∈ Lp(Rn) for some p ∈ (1,∞), then g has nontangential limit a.e. on R
n since

its components are harmonic functions with Lp nontangential maximal function,
and this nontangential limit clearly lies in Lp(Rn) because it is dominated by the
nontangential maximal function. Then, denoting the nontangential limit by g again
and letting ωn designate the volume of the unit sphere of dimension n, we get that
g = C+g, where

C+g(x) =
1

ωn

∫
Rn

y − x

|y − x|n+1
(−e0)g(y)dy

=
1

ωn

∫
Rn

x0

|x− y|n+1
g(y)dy +

1

ωn

∫
Rn

x1 − y1
|x− y|n+1

(−e1)g(y)dy(2.9)

+ · · ·+ 1

ωn

∫
Rn

xn − yn
|x− y|n+1

(−en)g(y)dy,

with x = x0e0+x1e1+· · ·+xnen ∈ Rn
1,+. Here, the presence of −e0 in the definition

of C+ is because −e0 is the exterior unit normal to R
n
1,+; see [8, 12].

Conversely, if g is any Cl(n,R)-valued function in Lp(Rn), the formula for C+g
makes good sense and defines a left-monogenic function in R

n
1,+ since the kernel is

left-monogenic (as is easily verified). Invoking the Plemelj formula [12], we get at
almost all points x ∈ R

n that there exist nontangential limits of C+g, denoted with
a curly C+g, which are given by

C+g(x) =
1

2
[g(x) +Hg(x)] =

1

2
(I +H)g(x),(2.10)
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where

Hg(x) =
2

ωn
lim

ε→0+

∫
|x−y|>ε

x1 − y1
|x− y|n+1

(−e1)g(y)dy

+ · · ·+ 2

ωn
lim

ε→0+

∫
|x−y|>ε

xn − yn
|x− y|n+1

(−en)g(y)dy

�
n∑

k=1

(−ek)Rk(g)(x),

where

Rk(g)(x) =
2

ωn
lim

ε→0+

∫
|x−y|>ε

xk − yk
|x− y|n+1

g(y)dy

is the k-th Riesz transformation of g, k = 1, · · · , n. As an operator, Rk has
multiplier −iκk/|κ| in the Fourier domain (κ = κ1e1 + · · · + κnen denoting the
Fourier variable), and it maps Lp(Rn,R) into itself for 1 < p < ∞; see [20, Ch. III,
Secs. 4.3-4.4]. The operator H defines the Hilbert transformation in the present
context, and it satisfies the relation H2 = I, where I is the identity.

We note that our definition of H is consistent with the classical definition of the
Hilbert transform in dimension 1, given e.g. in [2]. If we designate the latter with
H1, we get when n = 1, with e1 = −i, that

Hg = −e1
1

π

(
p.v.

1

(·)∗
)
g = i

1

π

(
p.v.

1

(·)∗
)
g � iH1g,

where “p.v.” indicates the principal value. Thus, in view of the well known re-
lation H2

1 = −I, we have that H2 = (iH1)
2 = I, which is consistent with the

n-dimensional case. Similar considerations apply to functions in Hp(Rn
1,−,R

n
1 ),

only trading C+ for its opposite (because the outer normal to Rn
1,− is e0 and not

−e0) and letting x now range over R
n
1,−. This time letting C−g stand for the

nontangential limit on Rn, this results in the Plemelj formula

C−g(x) =
1

2
(I −H)g(x).(2.11)

In the sequel we denote by Sc{x} the scalar part of a Clifford number x ∈
Cl(n,Φ), which is the 0-form of x, and by Nsc{x} the nonscalar part of x, which is
the sum of all the k-forms of x, k = 1, · · · , 2n.

We pointed out already that each function in Hp(Rn
1,±,R

n
1 ) is naturally associ-

ated to the conjugate of a harmonic gradient. In the next lemma, we identify the
latter as being the gradient of a Newton potential, and we describe the boundary
values of Hardy functions.

Lemma 2.1. If g = g0e0+ · · ·+gnen ∈ Hp(Rn
1,±,R

n
1 ), where each gk is real valued,

then its nontangential limit on R
n, still denoted as g, satisfies g = (I±H)g0, that is,

gk = ∓Rkg0 for k = 1, · · · , n. Conversely, each function on Rn of the form (I±H)ϕ,
with ϕ ∈ Lp(Rn,R), is the nontangential limit of a function in Hp(Rn

1,±,R
n
1 ),

and the Hardy norm is equivalent to ‖ϕ‖Lp(Rn). Moreover, the conjugate of each
g ∈ Hp(Rn

1,±,R
n
1 ) is the harmonic gradient of the Newton potential of ∓2/(n− 1)

times its scalar part g0, namely:

(2.12) g(x) = ∂0Ng0(x)−
n∑

k=1

∂kNg0(x)ek,
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with

Ng0(x) � ∓ 2

(n− 1)ωn

∫
Rn

g0(y)

|x− y|n−1
dy, x ∈ R

n
1,±.

Proof. By the Cauchy-Clifford formula, the function g in the upper half-space may
be expressed as the Cauchy integral over Rn of its boundary limit function. There-
fore the Plemelj theorem implies that (1/2)(I ± H)g = g, hence ±Hg = g. By
comparing the terms of degree 1 on the left- and the right-hand sides of the above
identity we get ∓ekRkg0 = ekgk for k = 1, · · · , n, ensuring that g = (I ± H)g0.
Invoking the Plemelj theorem again, this implies that the Cauchy integral of 2g0 is
a left-monogenic function whose nontangential boundary value is g. Hence, by the
Cauchy formula, this function must coincide with g on R

n
1,±. Now, when identifying

Rn
1 with Rn+1, the conjugate of the Cauchy kernel is −1/(n−1) times the gradient of

the Newton kernel 1/|x−·|n−1 and taking gradient commutes with the integration,
as the integrand does not have singularity, so we conclude that the conjugate of g
is the gradient of the Newton potential of ∓2g0/(n−1) (the ∓ arises because of the
presence of ∓e0 in the Cauchy integral). Conversely, by (2.10), a function on Rn of
the form (I±H)ϕ, where ϕ is scalar valued in Lp(Rn), is the nontangential limit of
the Cauchy integral C±(2ϕ) which is indeed para-vector-valued and monogenic. To
see that it lies in Hp(Rn

1,±,R
n
1 ), observe from what precedes that its conjugate is the

gradient of the Newton potential Nϕ of ∓2ϕ/(n−1). In particular, by inspection of
formula (2.12) (where g0 is set to ϕ), we find that Sc{(C±ϕ)(x0, x)} = (Px0

∗ϕ)(x)
at every (x0, x) ∈ Rn

1,±, where the symbol “∗” indicates convolution and Px0
is the

Poisson kernel at level x0:

(2.13) Px0
(x) =

2

ωn

|x0|
(x2

0 + |x|2)(n+1)/2
, x ∈ R

n.

Since Px0
has unit norm in L1(Rn) for all x0, it follows that

(2.14)
∥∥Sc{(C±ϕ)(x0, ·)

}∥∥
Lp(Rn)

≤ ‖ϕ‖Lp(Rn), ∀x0,

implying that the scalar part of C±ϕ meets the p-boundedness condition (2.5).
To show that the vector part also satisfies this condition, let us work on Rn

1,+, as
the argument for Rn

1,− is similar. Fix z0 > 0 and consider the para-vector-valued

function on R
n
1,+ given by F (x0, x) = (C+ϕ)(z0 + x0, x). Clearly it is monogenic,

and we get upon applying Hölder’s inequality to (2.9) that ‖F‖Hp
+

≤ c for some

constant c = c(z0); see definition (2.5). Hence F ∈ Hp(Rn
1,±,R

n
1 ), and it is obvious

that its nontangential limit on Rn is C+ϕ(z0, ·). Thus, by the previous part of the
proof, it holds that

(C+ϕ)(x0, ·) = (I +H)Sc{F (0, ·)} = (I +H)Sc
{
(C+ϕ)(x0, ·)

}
.

In view of the definition of H (cf. the equation following (2.10)) and the Lp-
boundedness of Riesz transforms, we now deduce from (2.14) that C+ϕ satisfies
(2.5), as desired. We also proved that ‖C+ϕ‖Hp

+
≤ c‖ϕ‖Lp(Rn) for some constant

c independent of ϕ, and since ‖ϕ‖Lp(Rn) is obviously less than the Lp norm of the
nontangential maximal function, which itself is equivalent to the Hardy norm, as
pointed out after (2.6), the proof is complete. �

When dealing with functions in Hp(Rn+1
± ,Rn+1), the Cauchy formula is the

same except that ∓e0 gets replaced by ∓en (the outer normal to R
n+1
± ), and in the
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Plemelj formula H is changed into Hen+1 =
∑n

k=1(−eken+1)Rk; see [8, Ch. 2, Sec.
5]. An argument analogous to the previous one shows that f = f1e1+· · ·+fn+1en+1

lies in Hp(Rn+1
± ,Rn+1) if and only if fk = ±Rkfn+1 for k = 1, · · · , n and that f is

Dn+1N , where N is the Newton potential of ∓2gn+1/(n− 1).
Observe that Lemma 2.1 and its analog for homogeneous spaces entail that

Hp(Rn
1,±,R

n
1 ) (resp. H

p(Rn+1
± ,Rn+1)) is a Banach space isomorphic to Lp(Rn,R),

with norm equivalent to the Lp-norm of the trace of the scalar part (resp. (n+1)-th
component). Observe also from this, since Lq(Rn,R) ∩ Lp(Rn,R) is dense in
Lp(Rn,R) for any q ∈ (1,∞), that Hp(Rn+1

± ,Rn+1) ∩ Hq(Rn+1
± ,Rn+1) is dense

in Hp(Rn+1
± ,Rn+1).

Lemma 2.1 easily implies a result which is of interest in its own right and parallels
the density of rational functions in holomorphic Hardy spaces of index p ∈ (1,∞) on
the half-plane [6]. Note that rational functions with simple poles are conjugate of
gradients of logarithmic potentials of discrete measures with finite support. In the
present context, analogs of rational functions with simple poles are conjugates of
gradients of Newton potentials of discrete measures with finite support. Specifically,
if we let

Rx(y) = ∇y

(
1

ωn|x− y|n−1

)

=
n− 1

ωn

⎛⎝ x0 − y0
|x− y|n+1

−
n∑

j=1

xj − yj
|x− y|n+1

ej

⎞⎠ , y ∈ R
n
1,+, x ∈ R

n
1,−,

then Rx ∈ Hp(Rn
1,+,R

n
1 ) as a function of y for fixed x, and we have the following

result.

Corollary 2.2. The span of {Rx}x∈R
n
1,−

is dense in Hp(Rn
1,+,R

n
1 ) for 1 < p < n.

Proof. It follows from Lemma 2.1 that Hp(Rn
1,+,R

n
1 ) is isomorphic to Lp(Rn,R)

with equivalence of norms, the isomorphism being

(2.15) Lp(Rn,R) � h �→ C+
(
h−

n∑
k=1

(Rkh)ek

)
∈ Hp(Rn

1,+,R
n
1 ).

The inverse image of Rx under this isomorphism is (1 − n)/2 times the Poisson
kernel Px0

(x − y) defined in (2.13). Thus, by the Hahn-Banach theorem, the as-

serted density is equivalent to the fact that no nonzero function in Lp′
(Rn,R), with

1/p + 1/p′ = 1, can have vanishing Poisson integral. This, however, drops out
immediately from the property that the Poisson kernel is an approximate identity,
thereby achieving the proof. �

When saying that a vector-valued function f = f1e1 + · · · + fnen on Rn is
divergence free, we mean that divf =

∑n
k=1 ∂kfk = 0. This is to be understood

in the generalized function sense that amounts to the relation
∑n

k=1 Rkfk = 0 or,

equivalently,
∑n

k=1 ξkf̂k(ξ) = 0, through the inverse Fourier transformation, again
to be understood in the generalized function sense if p > 2 so that the Fourier
transform is really a distribution. The space of vector-valued divergence free maps
in Lp(Rn,Rn) is a closed subset thereof and thus a Banach space in its own right
that we denote by Dp(Rn). Though initially defined on Rn only, a divergence free
vector field extends naturally to Rn

1,± (resp. Rn+1
± ) into an Rn-valued map F which
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is independent of x0 (resp. xn+1). This function need not be monogenic, but it
satisfies Sc{DF} = 0 (resp. Sc{Dn+1F} = 0).

3. Hardy-Hodge decomposition of para-vector-valued functions

in Lp(Rn)

Theorem 3.1. Let f be a para-vector-valued function in Lp(Rn, Cl(n,Φ)), 1 < p <
∞. Then f is uniquely decomposed as f = f+ + f− + f0, all in Lp(Rn), such that
f± are para-vector-valued, being the nontangential boundary limits of some two
functions in, respectively, Hp(Rn

1,±,R
n
1 ), and f0 is vector valued and divergence

free. Moreover, for all p in the indicated range the decomposition is unique and,
for p = 2,

‖f‖2 = ‖f+‖2 + ‖f−‖2 + ‖f0‖2.(3.16)

In fact, this decomposition induces a topological direct sum:

(3.17) Lp(Rn,Rn
1 ) = Hp(Rn

1,+,R
n
1 )⊕Hp(Rn

1,−,R
n
1 )⊕Dp(Rn).

Proof. Let f(x) =
∑n

k=0 fk(x)ek be in Lp(Rn), where f0(x), f1(x), · · · , fn(x) are
scalar valued and x = x1e1 + · · ·+ xnen ∈ Rn.

By (2.10) and (2.11), since H2 = I, we have that C± is a projection:

1

2
(I +H)f(x) = [

1

2
(I +H)]2f(x),

1

2
(I −H)f(x) = [

1

2
(I −H)]2f(x).

Then we have

f(x) =
1

2
(I +H)f(x) +

1

2
(I −H)f(x)

= [
1

2
(I +H)]2f(x) + [

1

2
(I −H)]2f(x)

=
1

2
(I +H)

[
Sc{1

2
(I +H)f(x)}+Nsc{1

2
(I +H)f(x)}

]
+

1

2
(I −H)

[
Sc{1

2
(I −H)f(x)}+Nsc{1

2
(I −H)f(x)}

]
=

1

2
(I +H)[Sc{1

2
(I +H)f(x)}] + 1

2
(I −H)[Sc{1

2
(I −H)f(x)}]

+
1

2
(I +H)[Nsc{1

2
(I +H)f(x)}] + 1

2
(I −H)[Nsc{1

2
(I −H)f(x)}].(3.18)

Consider the function given by the last line of the above chain of equalities, viz.

(3.19)
1

2
(I +H)[Nsc{1

2
(I +H)f(x)}] + 1

2
(I −H)[Nsc{1

2
(I −H)f(x)}].

It can be computed directly through

1

2
(I +H)[Nsc{1

2
(I +H)f(x)}]

=
1

4
(I +H)[

n∑
k=1

fkek +Nsc{Hf}]

=
1

4

{
n∑

k=1

fkek +Nsc{Hf}+
n∑

k=1

H[fkek] +H[Nsc{Hf}]
}
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and

1

2
(I −H)[Nsc{1

2
(I −H)f(x)}]

=
1

4
(I −H)[

n∑
k=1

fkek −Nsc{Hf}]

=
1

4

{
n∑

k=1

fkek −Nsc{Hf} −
n∑

k=1

H[fkek] +H[Nsc{Hf}]
}
.

By adding these relations together, we have that

1

2
(I +H)[Nsc{1

2
(I +H)f(x)}] + 1

2
(I −H)[Nsc{1

2
(I −H)f(x)}]

=
1

2

{
n∑

k=1

fkek +H[Nsc{Hf}]
}
.(3.20)

As f is para-vector valued, relation (3.18) and the fact that H maps scalar-valued
functions to vector-valued functions together imply that the quantity in (3.20)
is a para-vector; therefore H[Nsc{Hf}] is a para-vector. Now we work out its
expression.

Since

Hf =
n∑

k=1

Rk(fk)−
n∑

k=1

Rk(f0)ek +H ∧ f,

where f =
∑n

k=1 fkek, we have that

Nsc{Hf} = −
n∑

k=1

Rk(f0)ek +H ∧ f.

Consequently, since we need to collect terms only of the forms 0 and 1, and
because Riesz transforms commute, we obtain

H[Nsc{Hf}] = (−
n∑

k=1

R2
k)f0 +

n∑
k=1

⎡⎣(∑
l �=k

−R2
l )fk +Rk

∑
l �=k

Rlfl

⎤⎦ ek

= f0 +

n∑
k=1

⎡⎣(∑
l �=k

−R2
l )fk +Rk

∑
l �=k

Rlfl

⎤⎦ ek.

Substituting back into (3.20), we get that

1

2
(I +H)[Nsc{1

2
(I +H)f(x)}] + 1

2
(I −H)[Nsc{1

2
(I −H)f(x)}]

=
1

2

⎧⎨⎩f(x) +
n∑

k=1

⎡⎣(∑
l �=k

−R2
l )fk +Rk

∑
l �=k

Rlfl

⎤⎦ ek

⎫⎬⎭ .
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Therefore, by (3.18),

f(x) =
1

2
(I +H)

[
Sc{1

2
(I +H)f(x)}

]
+

1

2
(I −H)

[
Sc{1

2
(I −H)f(x)}

]

+
1

2

⎧⎨⎩f(x) +
n∑

k=1

⎡⎣(∑
l �=k

−R2
l )fk +Rk

∑
l �=k

Rlfl

⎤⎦ ek

⎫⎬⎭ .

Finally,

f(x) = (I +H)

[
Sc{1

2
(I +H)f(x)}

]
+ (I −H)

[
Sc{1

2
(I −H)f(x)}

]

+
n∑

k=1

⎡⎣(∑
l �=k

−R2
l )fk +Rk

∑
l �=k

Rlfl

⎤⎦ ek.(3.21)

It is apparent that (I+H)[Sc{ 1
2 (I+H)f(x)}] and (I−H)[Sc{ 1

2 (I−H)f(x)}] are
para-vector valued, and it follows from Lemma 2.1 that they are boundary values
of functions in Hp(Rn

1,+,R
n
1 ) and Hp(Rn

1,−,R
n
1 ) respectively. Now we show that

n∑
k=1

⎡⎣(∑
l �=k

−R2
l )fk +Rk

∑
l �=k

Rlfl

⎤⎦ ek

is divergence free. For this, by the last remark of the last section, it suffices to show
that

n∑
k=1

Rk

⎡⎣(∑
l �=k

−R2
l )fk +Rk

∑
l �=k

Rlfl

⎤⎦ = 0.(3.22)

The above, however, is obvious since Riesz transformations commute, and thus we
obtain the desired decomposition f(x) = f+ + f− + f0, where

(3.23) f+ = (I +H)[Sc{1
2
(I +H)f(x)}] ∈ Hp(Rn

1,+,R
n
1 ),

(3.24) f− = (I −H)[Sc{1
2
(I −H)f(x)}] ∈ Hp(Rn

1,−,R
n
1 ),

and

(3.25) f0 =
n∑

k=1

⎡⎣(∑
l �=k

−R2
l )fk +Rk

∑
l �=k

Rlfl

⎤⎦ ek

is divergence free.
Next we prove uniqueness. This is equivalent to showing that if we have a

decomposition of the zero function 0 = f+ + f− + f0, then it must be that f+ =
f− = f0 = 0. Indeed, in that case we may write

0 = (I +H)(f+ + f− + f0) = 2f+ + (I +H)f0 = 2f+ + f0 +Hf0,

where we used that f+ = Hf+ by (2.10) since C+f+ = f+, and also that Hf− =
−f− by (2.11) since C−f− = f−. Note that since f0 is divergence free, the scalar
part of Hf0 is zero, and thus only the 2-form part of Hf0 is possibly nonzero.
However, the last equality shows that the 2-form part also has to be zero, because
all the other terms are para-vectors. We thus conclude that 2f+ + f0 = 0. The
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same reasoning gives us 2f− + f0 = 0. These together yield f+ = f−. By applying
I + H to both sides we get f+ = 0, hence also f− = 0, and consequently f0 =
0. This establishes uniqueness and shows that (3.17) holds as a direct sum. In
addition, since f± and f0 are continuous functions of f in Lp(Rn, Cl(n,Φ)) by
(3.23), (3.24), (3.25) and the Lp continuity of the Riesz transformations, we see
that the projections in (3.17) are continuous; hence the sum is topological by the
open mapping theorem. Finally, when p = 2, we show the Pythagoras type relation

‖f‖2 = ‖f+‖2 + ‖f−‖2 + ‖f0‖2.(3.26)

First, since f is para-vector valued, we obviously have that

‖f‖2 =

∫
R2

ffdx.

Hence, to prove (3.26), it suffices to establish the following orthogonality relations:∫
Rn

f+f−dx =

∫
Rn

f−f+dx = 0(3.27)

and ∫
Rn

(f+f0 + f0f+)dx =

∫
Rn

(f−f0 + f0f−)dx = 0.(3.28)

Let us show (3.27). Recall from Lemma 2.1 that if g ∈ H2(Rn
1,±,R

n
1 ), then

g = (I ±H)g0, and consequently, taking Fourier transforms (the Fourier transform
of a vector-valued function is computed componentwise), we get that ĝ = 2χ±ĝ0,

where χ± are multipliers for the Hardy space projections χ±(ξ) =
1
2 (1± i

ξ

|ξ| ), that

satisfy χ2
± = χ± and χ+ +χ− = 1 as well as χ+χ− = χ−χ+ = 0. Here we used the

expression for the multiplier of Rk in the Fourier domain; see [12, 20]. Applying
these remarks to g = f± and using Parseval’s Theorem, we have that∫

R2

f+f−dx

=

∫
R2

(f+)∧(ξ)(f−)∧(ξ)dξ

= 4

∫
R2

χ+(ξ)χ−(ξ)f̂
+
0 f̂−

0 dξ

= 0,

where we used the relation χ+(ξ)χ−(ξ) = 0 for all ξ. The proof of the second
equality relation in (3.27) is similar.

Now, let us show that equality (3.28) holds. Indeed,∫
Rn

(f+f0 + f0f+)dx = 2Sc

{∫
Rn

f+f0dx

}
= Sc

{∫
Rn

(
1 + i

ξ

|ξ|

)
f̂0(ξ)f̂0(ξ)dξ

}
= Sc

{∫
Rn

f̂0(ξ)
iξ

|ξ| f̂
0(ξ)dξ

}
= 0,
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where the last equality used the relation (iξ/|ξ|)f̂0(ξ) = 0, the latter being a con-

sequence of the fact that f0 is divergence free. The proof is complete. �
Remark. If, alternatively, we use the scalar product

〈f, g〉 = Sc

∫
Rn

fgdx,

then indeed the decomposition f = f++f−+f0 is orthogonal. Moreover, since we
observed after the proof of Lemma 2.1 that H2(Rn

1,±,R
n
1 ) ∩Hp(Rn

1,±,R
n
1 ) is dense

in Hp(Rn
1,±,R

n
1 ), we deduce that (3.27) holds as soon as f+ ∈ Hp(Rn

1,+,R
n
1 ) and

f− ∈ Hp′
(Rn

1,−,R
n
1 ) with 1/p+ 1/p′ = 1:

(3.29)∫
Rn

f+f−dx =

∫
Rn

f−f+dx = 0, f+ ∈ Hp(Rn
1,+,R

n
1 ), f− ∈ Hp′

(Rn
1,−,R

n
1 ).

Likewise, (3.28) generalizes to∫
Rn

(f+f0 + f0f+)dx =

∫
Rn

(f−f0 + f0f−)dx(3.30)

= 0, f± ∈ Hp(Rn
1,±,R

n
1 ), f0 ∈ Dp′

(Rn).

A few comments are in order:

• If (3.17) gets projected onto the last n components, and since (±R1h, · · · ,
±Rnh) is a gradient vector field on Rn (i.e. the gradient of the trace of a
solution to the Neumann problem on R

n+1
± with inner normal derivative h

a.e. on Rn), we recover the classical Helmoltz-Hodge decomposition of vec-
tor fields from Lp(Rn,Rn) into the sum of a rotational free and divergence
free vector field [9].

• Decomposition (3.17) generalizes to higher dimensions the standard decom-
position of a complex-valued function in Lp(R) into the sum of a function
belonging to the holomorphic Hardy space Hp(R2

+) and a function belong-
ing to the holomorphic Hardy space Hp(R2

−). The difference in dimension
bigger than 1 is that a divergence free term must be added, for in this case
not every vector field is a gradient. Note, since Rk and the divergence op-
erator preserve realness, that Theorem 3.1 carries over to Clifford-valued
maps and Clifford Hardy spaces with complex coefficients.

4. Variations

Next we consider the homogeneous case on Rn. We regard Rn as being the
subspace Rn×{0} of Rn+1. When considering Clifford 1-forms as Euclidean vectors,
we mean that 1-forms in Cl(n,R) get identified with 1-forms in Cl(n+1,R) whose
coefficient of en+1 is zero. Note that Cl(n,R) can be viewed as the subalgebra of
Cl(n+ 1,R) generated by e1, · · · , en.
Theorem 4.1. Let f ∈ Lp(Rn, Cl(n+ 1,R)) be an (n+ 1)-vector-valued function,
1 < p < ∞. Then f is uniquely decomposed as f = f++f−+f0, all in Lp(Rn), such
that f± are the nontangential boundary limits of some two functions in, respectively,
Hp(Rn+1

± ,Rn+1), while f0 is vector valued in Cl(n,R) and divergence free. For all
p in the indicated range, the decomposition is unique and topological. Moreover, for
p = 2,

‖f‖2 = ‖f+‖2 + ‖f−‖2 + ‖f0‖2.
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By factorizing out en+1 one can, in particular, reduce the proof of Theorem 4.1
to that of Theorem 3.1. More precisely, noting that e−1

n+1 = −en+1, we use the
relation

n+1∑
k=1

fkek = [

n+1∑
k=1

fkeke
−1
n+1]en+1.

For the Cauchy kernels in the two settings, one has∑n
k=1 ykek − (

∑n+1
k=1 xkek)

|
∑n

k=1 ykek − (
∑n+1

k=1 xkek)|n+1

= −en+1

∑n
k=1 ykeke

−1
n+1 − (

∑n
k=1 xkeke

−1
n+1 + xn+1)

|
∑n

k=1 ykeke
−1
n+1 − (

∑n
k=1 xkeke

−1
n+1 + xn+1)|n+1

.

This corresponds to the relation between the two Dirac operators:

n+1∑
k=1

∂kek = (

n+1∑
k=1

∂keke
−1
n+1)en+1.

Letting ẽk = eke
−1
n+1, k = 1, · · · , n, one reduces the proof of Theorem 4.1 to that

of Theorem 3.1 (compare [17]).
Theorem 4.1 can alternatively be rewritten without mentioning Clifford analysis

as

Theorem 4.2. Every vector field f ∈ Lp(Rn,Rn+1), 1 < p < ∞, may be uniquely
decomposed as f = f+ + f− + f0, where f± ∈ Lp(Rn,Rn+1) are, respectively, the
nontangential boundary limits of some harmonic gradients on R

n+1
± , which satisfy

(2.7), while f0 ∈ Lp(Rn,Rn) is divergence free. The decomposition is topological,
and for p = 2 there holds

‖f‖2 = ‖f+‖2 + ‖f−‖2 + ‖f0‖2.

From the analog of Lemma 2.1 for homogeneous Hardy spaces (see the discus-
sion after the proof of that lemma), we know that boundary limits of harmonic
gradients on R

n+1
± satisfying (2.7) are those members of Lp(Rn,Rn+1) of the type

(±R1h, · · · ,±Rnh, h) with h ∈ Lp(Rn,R), where all the “+” signs and, respec-
tively, all the “−” signs are taken. In such form, Theorem 4.2 was proven in [1]
when n = 2, also for more general function spaces.

It is worth contrasting Theorem 3.1 and Theorem 4.1 with their quaternionic
counterparts. The space H of real quaternions consists of numbers q = q0 + q, with
q = q1e1 + q2e2 + q3e3, where qj ∈ R and e1, e2 are as before, but, additionally,

e3 = e1e2. We identify the linear space consisting of all q with the space R
3,

and we put H± for those quaternions with, respectively, ±q0 > 0. We say that a
quaternionic-valued function f is left-quaternionic if (D0 + D3)f = 0 (see (2.2)),
but this time the relation e1e2 = e3 is taken into account. The definitions of
quaternionic Hardy spaces Hp(H±,H) as spaces of left quaternionic functions in
H± meeting the analogs of (2.5) now run parallel to those for inhomogeneous Hardy
spaces.

Theorem 4.3. Let f ∈ Lp(R3,H), 1 < p < ∞. Then f is uniquely decomposed as
f = f+ + f− such that f± ∈ Lp(R3,H) are nontangential boundary limit functions
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of some two functions in, respectively, Hp(H±,H). Moreover, for p = 2, f+ and
f− are orthogonal:

‖f‖2 = ‖f+‖2 + ‖f−‖2.

Proof. This is an immediate consequence of the corresponding Plemelj formula, for
functions obtained from the Cauchy formula are all quaternionic-valued.

Remark. The reason why the divergence free term f0 can be omitted in Theorem
4.3 is the closedness of multiplication in the quaternionic field. At the same time,
the interpretation of f± as traces of harmonic gradients is lost. To see the dif-
ference in the analysis of Hp(R3

1,±,R
3
1) and Hp(H±,H), recall that if f(x0 + x) =

f0(x0+x)e0+f1(x0+x)e1+f2(x0+x)e2+f3(x0+x)e3 lies in Hp(R3
1,+,R

3
1), then

(4.31)

⎧⎪⎪⎨⎪⎪⎩
∂f0
∂x0

= ∂f1
∂x1

+ ∂f2
∂x2

+ ∂f3
∂x3

,

∂f0
∂xi

= − ∂fi
∂x0

, i = 1, 2, 3,

∂fi
∂xj

=
∂fj
∂xi

, i �= 0, j �= 0, i �= j,

while f(q0+q) = f0(q0+q)e0+f1(q0+q)e1+f2(q0+q)e2+f3(q0+q)e3 ∈ Hp(H+,H)
will imply

(4.32)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂f0
∂x0

= ∂f1
∂x1

+ ∂f2
∂x2

+ ∂f3
∂x3

,

∂f1
∂x2

= ∂f3
∂x0

+ ∂f0
∂x3

+ ∂f2
∂x1

,

∂f2
∂x3

= ∂f1
∂x0

+ ∂f0
∂x1

+ ∂f3
∂x2

,

∂f3
∂x1

= ∂f2
∂x0

+ ∂f0
∂x2

+ ∂f1
∂x3

.

The system of equations (4.31) implies the system of equations (4.32), but not
conversely. �

5. Uniqueness issues for potentials in divergence form

In [1], the Hardy-Hodge decomposition was introduced when n = 2 to charac-
terize silent magnetizations with support in R2. This issue can be recast as that of
describing vanishing potentials in divergence form. Recall that the Newton poten-
tial of a distribution ϕ on Rn+1 is the convolution of ϕ with 1/(ωn|x|n−1), wherever
it exists. The potential is said to be in divergence form if ϕ can be taken to be the
divergence of some Rn+1-valued distribution ψ:

(5.33) Pdivψ(x) =
1

ωn

∫
1

|x− y|n−1
divψ(y) = − 1

ωn

∫
∇y

(
1

|x− y|n−1

)
· ψ(y),

where ∇y indicates the gradient with respect to the variable y, where the dot
indicates Euclidean scalar product. When n = 2, in the quasi-static approximation
to Maxwell’s equations, (5.33) formally expresses the magnetic potential of the
magnetization ψ (cf. [10, Sec. 5.9.C]). Those x (if any) for which this expression
makes good sense depend of course on ψ. We shall be concerned with the case
where ψ is supported on a hyperplane P and has Lp density there. Specifically, if
we write

(5.34) P = {x ∈ R
n+1, x · u = a}

for some u ∈ Rn+1 and a ∈ R, it means that ψ = f ⊗ δ0(x · u − a) where f =
(f0, · · · , fn) ∈ Lp(P,Rn+1) and δ0 indicates the Dirac mass at 0. Then, (5.33)
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becomes

(5.35) Pdivψ(x) =
n− 1

ωn

∫
P

f(y) · (x− y)

|x− y|n+1
dy,

which is well defined for all x /∈ P, more generally for all x not in the support of f .
Let

H± = {x ∈ R
n+1, ±(x · u− a) > 0}

denote the two half-spaces whose union is Rn+1 \ P, the complement of P. The
question that we raise is:

for which f does it happen that Pdivψ(x) = 0 for all x ∈ H±?

From the physical viewpoint, when n = 1 it amounts to describing those magneti-
zations with Lp density supported on a plane which are silent from one side of that
plane, meaning that they generate no magnetic field in the corresponnding half-
space. These cannot be detected by measuring devices and account a good deal
for the ill-posedness of inverse magnetization problems [15]. The result below gives
an answer to the question in terms of the Hardy-Hodge decomposition, thereby
generalizing to higher dimension results from [1] for n = 2.

It will be convenient to define the Clifford Hardy spaces Hp(H±,R
n
1 ) consisting

of para-vector-valued monogenic functions g on H± meeting the condition

(5.36) sup
±b>0

∫
Pb

|g|p dm < ∞, Pb � {x ∈ R
n+1, ±(x · u− a) = b},

where dm indicates the differential of Lebesgue measure. Just as in the case of
inhomogeneous Hardy spaces Hp(Rn

1,±,R
n
1 ), condition (5.36) may be replaced by

the Lp(P,R)-boundedness of the nontangential maximal function, computed this
time over cones with vertex on P and axis parallel to u. Functions in Hp(H±,R

n
1 )

have nontangential limits in Lp(P,Rn
1 ), of which they are the Cauchy-Clifford in-

tegral, and they can be identified with their nontangential limit. In fact, if R is
any orientation preserving affine isometry mapping P to {0} ×Rn, we have that f
belongs to Hp(H±,R

n
1 ) if and only if f ◦R belongs to Hp(Rn

1,±,R
n
1 ). As an extra

piece of notation, we use u⊥ for the vector space orthogonal to u in Rn+1, which is
the linear hyperplane parallel to P.

Theorem 5.1. Let P⊂Rn+1 be a hyperplane defined by (5.34) and ψ∈Lp(P,Rn+1)
with 1 < p < ∞. Then the potential Pdivψ vanishes on H± if and only if ψ is the
sum of a member of Hp(H±,R

n
1 ) and of a divergence free vector field tangent to P

in Lp(P, u⊥). The potential Pdivψ vanishes on Rn+1 \ P (that is, on both H+ and
H−) if and only if it is a divergence free function in Lp(P, u⊥).

Proof. Because the statement is invariant under orientation preserving affine isome-
tries, we may assume that P = {0} × R

n so that H± = R
n
1,±. Let us single out

the components of ψ as ψ0, · · · , ψn and identify ψ with the para-vector-valued
function ψ = ψ0e0 + ψ1e1 + · · · + ψnen. Set ψ = ψ+ + ψ− + ψ0 for the Hardy-
Hodge decomposition from Theorem 3.1. For x ∈ Rn

1,±, it is easily checked that

y �→ x− y/|x− y|n+1 lies in Hq(Rn
1,±,R

n
1 ). Thus, it follows from (5.35), (3.29) and

(3.30) that Pdiv(ψ∓+ψ0) ≡ 0 on Rn
1,±. Therefore, the assumption that Pdivψ ≡ 0 on

Rn
1,± reduces to Pdivψ∓ ≡ 0 on Rn

1,±. Now, comparing (5.35) and (2.9), we find this
is equivalent to

Sc
{
C±ψ∓} (x̄) = 0, x ∈ R

n
1,±,
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which amounts to

(5.37) Sc
{
C∓ψ∓} (ξ) = 0, ξ ∈ R

n
1,∓.

Since ψ∓ ∈ Hp(Rn
1,∓,R

n
1 ), we have by the Cauchy-Clifford formula that C∓ψ∓(ξ) =

ψ∓(ξ); therefore (5.35) means that Sc{ψ∓} vanishes on Rn
1,∓ and so does its non-

tangential limit on Rn. But we know from Lemma 2.1 that the Lp(Rn)-norm of the
nontangential limit of the scalar part is an equivalent norm on Hp(Rn

1,∓,R
n
1 ), hence

ψ∓ = 0. This proves the first assertion of the theorem. To establish the second
assertion, observe from what precedes that if Pdivψ = 0 both in Rn

1,+ and Rn
1,−,

then ψ± = 0, and thus ψ = ψ0 is vector valued and divergence free. The proof is
complete. �
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