Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Trajectories in interlaced integral pencils of 3-dimensional analytic vector fields are o-minimal


Authors: Olivier Le Gal, Fernando Sanz and Patrick Speissegger
Journal: Trans. Amer. Math. Soc. 370 (2018), 2211-2229
MSC (2010): Primary 34C08, 03C64, 34M30
DOI: https://doi.org/10.1090/tran/7205
Published electronically: November 1, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \xi $ be an analytic vector field at $ (\mathbb{R}^3,0)$ and $ \mathcal {I}$ be an analytically non-oscillatory integral pencil of $ \xi $; i.e., $ \mathcal {I}$ is a maximal family of analytically non-oscillatory trajectories of $ \xi $ at 0 all sharing the same iterated tangents. We prove that if $ \mathcal {I}$ is interlaced, then for any trajectory $ \Gamma \in \mathcal {I}$, the expansion $ \mathbb{R}_{\textup {an},\Gamma }$ of the structure $ \mathbb{R}_{\textup {an}}$ by $ \Gamma $ is model-complete, o-minimal and polynomially bounded.


References [Enhancements On Off] (What's this?)

  • [1] Edward Bierstone and Pierre D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5-42. MR 972342
  • [2] Patrick Bonckaert and Freddy Dumortier, Smooth invariant curves for germs of vector fields in $ {\bf R}^3$ whose linear part generates a rotation, J. Differential Equations 62 (1986), no. 1, 95-116. MR 830049, https://doi.org/10.1016/0022-0396(86)90107-5
  • [3] Felipe Cano, Robert Moussu, and Fernando Sanz, Pinceaux de courbes intégrales d'un champ de vecteurs analytique, Astérisque 297 (2004), 1-34. MR 2135673
  • [4] F. Cano, R. Moussu, and F. Sanz, Oscillation, spiralement, tourbillonnement, Comment. Math. Helv. 75 (2000), no. 2, 284-318. MR 1774707, https://doi.org/10.1007/s000140050127
  • [5] Shui Nee Chow and Jack K. Hale, Methods of bifurcation theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 251, Springer-Verlag, New York-Berlin, 1982. MR 660633
  • [6] M. Coste, An introduction to o-minimal structures, Dipartimento di Matematica, Università di Pisa, Int. Ed. e Poligr. Int. (2000).
  • [7] Lou van den Dries and Chris Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), no. 2, 497-540. MR 1404337, https://doi.org/10.1215/S0012-7094-96-08416-1
  • [8] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
  • [9] Jean-Marie Lion and Jean-Philippe Rolin, Volumes, feuilles de Rolle de feuilletages analytiques et théorème de Wilkie, Ann. Fac. Sci. Toulouse Math. (6) 7 (1998), no. 1, 93-112. MR 1658452
  • [10] O. Le Gal, F. Sanz, and P. Speissegger, Non-interlaced solutions of 2-dimensional systems of linear ordinary differential equations, Proc. Amer. Math. Soc. 141 (2013), no. 7, 2429-2438. MR 3043024, https://doi.org/10.1090/S0002-9939-2013-11614-X
  • [11] B. Malgrange and J.-P. Ramis, Fonctions multisommables, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 1-2, 353-368. MR 1162566
  • [12] J.-P. Ramis and Y. Sibuya, A new proof of multisummability of formal solutions of nonlinear meromorphic differential equations, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 3, 811-848. MR 1303885
  • [13] J.-P. Rolin, F. Sanz, and R. Schäfke, Quasi-analytic solutions of analytic ordinary differential equations and o-minimal structures, Proc. Lond. Math. Soc. (3) 95 (2007), no. 2, 413-442. MR 2352566, https://doi.org/10.1112/plms/pdm016
  • [14] F. Sanz, Course on non-oscillatory trajectories, Fields Institute Communications, vol. 62, Amer. Math. Soc., Providence, RI, 2012, pp. 111-177.
  • [15] Patrick Speissegger, The Pfaffian closure of an o-minimal structure, J. Reine Angew. Math. 508 (1999), 189-211. MR 1676876, https://doi.org/10.1515/crll.1999.026
  • [16] Floris Takens, Singularities of vector fields, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 47-100. MR 0339292
  • [17] Lou van den Dries, Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, vol. 248, Cambridge University Press, Cambridge, 1998. MR 1633348
  • [18] Wolfgang Wasow, Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, Vol. XIV, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1965. MR 0203188

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 34C08, 03C64, 34M30

Retrieve articles in all journals with MSC (2010): 34C08, 03C64, 34M30


Additional Information

Olivier Le Gal
Affiliation: Université de Savoie, Laboratoire de Mathématiques, Bâtiment Chablais, Campus Scientifique, 73376 Le Bourget-du-Lac Cedex, France
Email: Olivier.Le-Gal@univ-savoie.fr

Fernando Sanz
Affiliation: Universidad de Valladolid, Departamento de Álgebra, Análisis Matemático, Geometría y Topología, Facultad de Ciencias, Campus Miguel Delibes, Paseo de Belén, 7, E-47011 Valladolid, Spain
Email: fsanz@agt.uva.es

Patrick Speissegger
Affiliation: Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
Email: speisseg@math.mcmaster.ca

DOI: https://doi.org/10.1090/tran/7205
Keywords: Ordinary differential equations, o-minimal structures, multisummable series, Stokes phenomena
Received by editor(s): October 9, 2013
Received by editor(s) in revised form: January 16, 2017
Published electronically: November 1, 2017
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society