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THE EXTENSION AND CONVERGENCE

OF MEAN CURVATURE FLOW IN HIGHER CODIMENSION

KEFENG LIU, HONGWEI XU, FEI YE, AND ENTAO ZHAO

Abstract. In this paper, we investigate the convergence of the mean curva-
ture flow of closed submanifolds in Rn+q . We show that if the initial subman-
ifold satisfies some suitable integral curvature conditions, then along the mean
curvature flow it will shrink to a round point in finite time.

1. Introduction

Let F0 : Mn → Nn+q be a smooth immersion from an n-dimensional Riemann-
ian manifold without boundary to an (n + q)-dimensional Riemannian manifold.
Consider a one-parameter family of smooth immersions F : M × [0, T ) → N satis-
fying { (

∂
∂tF (x, t)

)⊥
= H(x, t),

F (x, 0) = F0(x),

where
(

∂
∂tF (x, t)

)⊥
is the normal component of ∂

∂tF (x, t), H(x, t) is the mean
curvature vector of Ft(M) and Ft(x) = F (x, t). We call F : M × [0, T ) → N the
mean curvature flow with initial value F0 : M → N . This is the general form of the
mean curvature flow, which is a nonlinear weakly parabolic system and is invariant
under reparametrization of M . We can find a family of diffeomorphisms φt : M →
M for t ∈ [0, T ) such that F̄t = Ft ◦ φt : M → N satisfies ∂

∂t F̄ (x, t) = H̄(x, t). We
will study the (reparameterized) mean curvature flow{

∂
∂tF (x, t) = H(x, t),
F (x, 0) = F0(x).

(1.1)

The mean curvature flow was proposed by Mullins [14] to describe the formation
of grain boundaries in annealing metals. In [2], Brakke introduced the motion of
a submanifold by its mean curvature in arbitrary codimension and constructed a
generalized varifold solution for all time. For the classical solution of the mean
curvature flow, most work has been done on hypersurfaces. Huisken [9, 10] showed
that if the initial hypersurface in a complete manifold with bounded geometry
is compact and uniformly convex in some sense, then the mean curvature flow
converges to a round point in finite time. Many other beautiful results have been
obtained, and there are various approaches to studying the mean curvature flow of
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hypersurfaces (see [4, 7], etc.). However, relatively little is known about the mean
curvature flows of submanifolds in higher codimensions; see [18, 19, 22–24], etc.,
for example. Recently, Andrews-Baker [1] proved a convergence theorem for the
mean curvature flow of closed submanifolds satisfying a suitable pointwise pinching
condition in the Euclidean space.

For an n-dimensional submanifold M in a Riemannian manifold, we denote by
g the induced metric on M . Let A and H be the second fundamental form and the
mean curvature vector of M , respectively. The tracefree second fundamental form
Å is defined by Å = A − 1

ng ⊗ H. Denote by || · ||p the Lp-norm of a function or
a tensor field. The volume of a compact manifold Σ is denoted by Vol(Σ). In the
present paper, we obtain the following convergence theorems for the mean curvature
flow of closed submanifolds in the Euclidean space.

Theorem 1.1. Let F : Mn → R
n+q (n ≥ 3) be a smooth closed submanifold. Then

for any fixed p > 1, there is a positive constant C1 depending on n, p,Vol(M) and
||A||n+2, such that if

||Å||p < C1,

then the mean curvature flow with F as initial value has a unique solution F : M ×
[0, T ) → R

n+q in a finite maximal time interval, and Ft(M) converges uniformly

to a point x ∈ R
n+q as t → T . The rescaled immersions F̃t =

Ft−x√
2n(T−t)

converge

in C∞-topology to a limiting embedding F̃T such that F̃T (M) is the unit n-sphere
in some (n+ 1)-dimensional subspace of Rn+q.

Theorem 1.2. Let F : Mn → R
n+q (n ≥ 3) be a smooth closed submanifold. Then

for any fixed p > n, there is a positive constant C2 depending on n, p,Vol(M) and
||H||n+2, such that if

||Å||p < C2,

then the mean curvature flow with F as initial value has a unique solution F : M ×
[0, T ) → R

n+q in a finite maximal time interval, and Ft(M) converges uniformly

to a point x ∈ R
n+q as t → T . The rescaled immersions F̃t =

Ft−x√
2n(T−t)

converge

in C∞-topology to a limiting embedding F̃T such that F̃T (M) is the unit n-sphere
in some (n+ 1)-dimensional subspace of Rn+q.

Let S
n denote the unit n-sphere. Using the Chen-Willmore inequality on total

mean curvature [3], we obtain the following convergence theorem for the mean
curvature flow.

Theorem 1.3. Let F : Mn → R
n+q (n ≥ 3) be a smooth closed submanifold. Then

there is a positive constant C3 depending on n,Vol(M) and ||A||n+2, such that if

||A||n < n1/2[Vol(Sn)]1/n + C3,

then the mean curvature flow with F as initial value has a unique solution F : M ×
[0, T ) → R

n+q in a finite maximal time interval, and Ft(M) converges uniformly

to a point x ∈ R
n+q as t → T . The rescaled immersions F̃t =

Ft−x√
2n(T−t)

converge

in C∞-topology to a limiting embedding F̃T such that F̃T (M) is the unit n-sphere
in some (n+ 1)-dimensional subspace of Rn+q.
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As immediate consequences of the convergence theorems, we obtain the following
differentiable sphere theorems. First let C1 be as in Theorem 1.1.

Corollary 1.4. Let F : Mn → R
n+q (n ≥ 3) be a smooth closed submanifold. If

||Å||p < C1

for some p > 1, then M is diffeomorphic to the unit n-sphere.

Similarly, let C2 be as in Theorem 1.2.

Corollary 1.5. Let F : Mn → R
n+q (n ≥ 3) be a smooth closed submanifold. If

||Å||p < C2

for some p > n, then M is diffeomorphic to the unit n-sphere.

Also, let C3 be as in Theorem 1.3. Then we have the following.

Corollary 1.6. Let F : Mn → R
n+q (n ≥ 3) be a smooth closed submanifold. If

||A||n < n1/2[Vol(Sn)]1/n + C3,

then M is diffeomorphic to the unit n-sphere.

We remark that in the above theorems and corollaries, we can replace the volume
Vol(M) by a positive lower bound of |H|, in which case our method works without
change.

The paper is organized as follows. In Section 2, we introduce some basic equa-
tions in submanifold theory and recall the evolution equations of the second fun-
damental form along the mean curvature flow. In Section 3, by using the Moser
iteration and blow-up method for parabolic equations, we prove an extension the-
orem for the mean curvature flow. Theorems 1.1, 1.2 and 1.3 are proved in Section
4. In Section 5, we propose some unsolved problems on convergence of the mean
curvature flow in higher codimension.

2. Preliminaries

Let F : Mn → Nn+q be a smooth immersion from an n-dimensional Riemannian
manifold Mn without boundary to an (n + q)-dimensional Riemannian manifold
Nn+q. We shall make use of the following convention on the range of indices:

1 ≤ i, j, k, . . . ≤ n, 1 ≤ A,B,C, . . . ≤ n+ q, and n+ 1 ≤ α, β, γ, . . . ≤ n+ q.

The Einstein sum convention is used to sum over the repeated indices.
Choose a local orthonormal frame field {eA} on N such that the ei’s are tangent

to M . Let {ωA} be the dual frame field of {eA}. The metric g and the volume
form dμ of M are g =

∑
ωi ⊗ ωi and dμ = ω1 ∧ · · · ∧ ωn.

For any x ∈ M , denote by NxM the normal space of M in N at point x, which
is the orthogonal complement of TxM in F ∗TF (x)N . Denote by ∇̄ the Levi-Civita

connection on N . The Riemannian curvature tensor R̄ of N is defined by

R̄(U, V )W = −∇̄U ∇̄V W + ∇̄V ∇̄UW + ∇̄[U,V ]W
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for vector fields U, V and W tangent to N . The induced connection ∇ on M is
defined by

∇XY = (∇̄XY )�

for X,Y tangent to M , where ( )� denotes the tangential component. Let R be
the Riemannian curvature tensor of M .

Given a normal vector field ξ along M , the induced connection∇⊥ on the normal
bundle is defined by

∇⊥
Xξ = (∇̄Xξ)⊥,

where ( )⊥ denotes the normal component. Let R⊥ denote the normal curvature
tensor.

The second fundamental form is defined to be

A(X,Y ) = (∇̄XY )⊥

as a section of the tensor bundle T ∗M ⊗T ∗M ⊗NM , where T ∗M and NM are the
cotangential bundle and the normal bundle over M . The mean curvature vector H
is the trace of the second fundamental form.

The first covariant derivative of A is defined as

(∇̃XA)(Y, Z) = ∇⊥
XA(Y, Z)−A(∇XY, Z)−A(Y,∇XZ),

where ∇̃ is the connection on T ∗M ⊗ T ∗M ⊗ NM . Similarly, we can define the
second covariant derivative of A. Under the local orthonormal frame field, the
components of A and its first and second covariant derivatives are

hα
ij = 〈A(ei, ej), eα〉,

hα
ijk = 〈(∇̃ekA)(ei, ej), eα〉,

hα
ijkl = 〈(∇̃el∇̃ekA)(ei, ej), eα〉.

The Laplacian of A is defined by Δhα
ij =

∑
k h

α
ijkk.

We define the trace-free second fundamental form Å by Å = A− 1
ng⊗H, whose

components are Åα
ij = hα

ij − 1
nh

α
kkδij . Obviously, we have Åα

ii = 0.
Let

Rijkl = g(R(ei, ej)ek, el),

R̄ABCD = 〈R̄(eA, eB)eC , eD〉,
R⊥

ijαβ = 〈R⊥(ei, ej)eα, eβ〉.

Then we have the following Gauss, Codazzi and Ricci equations:

Rijkl = R̄ijkl + hα
ikh

α
jl − hα

ilh
α
jk,

hα
ijk − hα

ikj = −R̄αijk,

R⊥
ijαβ = R̄ijαβ + hα

ikh
β
jk − hα

jkh
β
ik.

Suppose F : M × [0, T ) → N is the mean curvature flow with initial value
F0 : M → N . We have the following evolution equations.
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Lemma 2.1 ([22]). Along the mean curvature flow we have

∂

∂t
dμt = −|H|2dμt,(2.1)

∂

∂t
hα
ij = Δhα

ij + R̄αijk,k + R̄αkik,j

−2R̄lijkh
α
lk + 2R̄αβjkh

β
ik + 2R̄αβikh

β
jk

−R̄lkikh
α
lj − R̄lkjkh

α
li + R̄αkβkh

β
ij

−hα
im(hβ

jmhβ
ll − hβ

kmhβ
jk)

−hα
km(hβ

jmhβ
ik − hβ

kmhβ
ij)

−hβ
ik(h

β
jlh

α
kl − hβ

klh
α
jl)

−hα
jkh

β
ijh

β
ll + hβ〈eα, ∇̄Heβ〉,(2.2)

where R̄ABCD,E are the components of the first covariant derivative ∇̄R̄ of R̄.

3. The extension of mean curvature flow

In this section, we prove the extension theorem for the mean curvature flow of
submanifolds in arbitrary codimension. Throughout this section, we assume that
the ambient space N has bounded geometry. Recall that a Riemannian manifold
is said to have bounded geometry if (i) the sectional curvature is bounded; (ii) the
injective radius is bounded from below by a positive constant. We always assume
that N is a Riemannian manifold with bounded geometry satisfying −K1 ≤ KN ≤
K2 for nonnegative constants K1, K2, and the injective radius of N is bounded
from below by a positive constant iN .

In [9, 10], Huisken showed that if the second fundamental form is uniformly
bounded, then the mean curvature flow can be extended over the time. Le-Šešum
[12] and Xu-Ye-Zhao [27] obtained some integral conditions to extend the mean
curvature flow of hypersurfaces in the Euclidean space independently. Later, Xu-
Ye-Zhao [28] generalized these extension theorems to the case where the ambient
space is a Riemannian manifold with bounded geometry. In the present paper,
we generalize the extension theorems in [12, 27, 28] to the mean curvature flow of
submanifolds in a Riemannian manifold with bounded geometry.

The following Sobolev inequality can be found in [8], which is a generalization
of the remarkable work of Michael-Simon [13].

Lemma 3.1 ([8]). Let Mn ⊂ Nn+q be an n(≥ 2)-dimensional closed submanifold in
a Riemannian manifold Nn+q with codimension q ≥ 1. Denote by iN the positive
lower bound of the injective radius of N restricted on M . Assume the sectional
curvature KN of N satisfies KN ≤ b2. Let h be a nonnegative C1 function on M .
Then (∫

M

h
n

n−1 dμ

)n−1
n

≤ C(n, α)

∫
M

[
|∇h|+ h|H|

]
dμ,

provided

b2(1− α)−
2
n (ω−1

n Vol(supp h))
2
n ≤ 1 and 2ρ0 ≤ iN ,
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where

ρ0 =

{
b−1 sin−1 b(1− α)−

1
n (ω−1

n Vol(supp h))
1
n for b real,

(1− α)−
1
n (ω−1

n Vol(supp h))
1
n for b imaginary.

Here ωn is the volume of the unit ball in R
n, α is a free parameter, 0 < α < 1, and

C(n, α) =
1

2
π · 2nα−1(1− α)−

1
n

n

n− 1
ω
− 1

n
n .

For b imaginary, we may omit the factor 1
2π in the definition of C(n, α).

Lemma 3.2. Let Mn ⊂ Nn+q be an n(≥ 3)-dimensional closed submanifold in a
Riemannian manifold Nn+q with codimension q ≥ 1. Assume KN ≤ K2, where K2

is a nonnegative constant. Let f be a nonnegative C1 function on M satisfying

K2(n+ 1)
2
n (ω−1

n Vol(supp f))
2
n ≤ 1,(3.1)

2K
− 1

2
2 sin−1 K

1
2
2 (n+ 1)

1
n (ω−1

n Vol(supp f))
1
n ≤ iN .(3.2)

Then

||∇f ||22 ≥ (n− 2)2

4(n− 1)2(1 + s)

[
1

C2(n)
||f ||22n

n−2
−H2

0

(
1 +

1

s

)
||f ||22

]
,

where H0 = maxx∈M |H|, C(n) = C(n, n
n+1 ) and s > 0 is a free parameter.

Proof. For all g ∈ C1(M), g ≥ 0 satisfying (3.1) and (3.2), Lemma 3.1 implies

||g|| n
n−1

≤ C(n)

∫
M

(|∇g|+ g|H|)dμ.(3.3)

Substituting g = f
2(n−1)
n−2 into (3.3) gives(∫

M

f
2n

n−2 dμ

)n−1
n

≤ 2(n− 1)

n− 2
C(n)

∫
M

f
n

n−2 |∇f |dμ+ C(n)

∫
M

|H|f
2(n−1)
n−2 dμ.

By Hölder’s inequality, we get(∫
M

f
2n

n−2 dμ

)n−1
n

≤ C(n)

[
2(n− 1)

n− 2

(∫
M

f
2n

n−2 dμ

) 1
2
(∫

M

|∇f |2dμ
) 1

2

+

(∫
M

H2
0f

2dμ

) 1
2
(∫

M

f
2n

n−2 dμ

) 1
2
]
.

Then(∫
M

f
2n

n−2 dμ

)n−2
2n

≤ C(n)

[
2(n− 1)

n− 2

(∫
M

|∇f |2dμ
) 1

2

+

(∫
M

H2
0f

2dμ

) 1
2
]
.

This implies

||f ||22n
n−2

≤ C2(n)

[
4(n− 1)2(1 + s)

(n− 2)2
||∇f ||22 +H2

0

(
1 +

1

s

)
||f ||22

]
,

which is desired. �

Now we establish an inequality involving the maximal value of the squared norm
of the mean curvature and its Ln+2-norm in the space-time.
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Lemma 3.3. Suppose that Ft : M
n → Nn+q (n ≥ 3) is the mean curvature flow

solution for t ∈ [0, T0], where N has bounded geometry. Then

max
(x,t)∈M×[

T0
2 ,T0]

|H|2(x, t) ≤ C

(∫ T0

0

∫
Mt

|H|n+2dμtdt

) 2
n+2

,

where C is some constant depending only on n, T0, sup(x,t)∈M×[0,T0] |A|, K1, K2

and iN .

Proof. In the following proof, we always denote by C the constant depending on
some quantities, including n, T0, sup(x,t)∈M×[0,T0] |A|, K1, K2 and iN , which may
not be the same in different lines. We make use of Moser iteration for parabolic
equations. Here we follow the computation in [6]. From the evolution equation
of the second fundamental form in Lemma 2.1, we have the following differential
inequality:

∂

∂t
|H|2 ≤ Δ|H|2 + β|H|2,(3.4)

where β is a positive constant depending only on n, sup(x,t)∈M×[0,T0] |A|, K1 and

K2. For 0 < R < R′ < ∞ and x0 ∈ M , we set

η =

⎧⎨⎩
1, x ∈ Bg(0)(x0, R),
η ∈ [0, 1] and |∇η|g(0) ≤ 1

R′−R , x ∈ Bg(0)(x0, R
′) \Bg(0)(x0, R),

0, x ∈ M \Bg(0)(x0, R
′).

Since supp η ⊆ Bg(0)(x0, R
′), we assume that R′ is sufficiently small such that η

satisfies (3.1) and (3.2) with respect to g(0). On the other hand, the area of some
fixed subset in M is nonincreasing along the mean curvature flow; hence η satisfies
(3.1) and (3.2) with respect to each g(t) for t ∈ [0, T0]. Putting f = |H|2 and
B(R′) = Bg(0)(x0, R

′), the inequality (3.4) implies that, for any m ≥ 2,

1

m

∂

∂t

∫
B(R′)

fmη2dμt

≤
∫
B(R′)

(
η2fm−1Δfdμt + βfmη2

)
dμt +

∫
B(R′)

1

m
fmη2

∂

∂t
dμt

=

∫
B(R′)

(
η2fm−1Δfdμt + βfmη2

)
dμt −

∫
B(R′)

1

m
fm+1η2dμt

≤
∫
B(R′)

(
η2fm−1Δfdμt + βfmη2

)
dμt.(3.5)

Here we have used the evolution equation of the volume form in Lemma 2.1. Inte-
grating by parts we obtain∫
B(R′)

η2fm−1Δfdμt =− 4(m− 1)

m2

∫
B(R′)

|∇(f
m
2 η)|2dμt +

4

m2

∫
B(R′)

|∇η|2fmdμt

+
4(m− 2)

m2

∫
B(R′)

〈∇(f
m
2 η), f

m
2 ∇η〉dμt

≤− 2

m

∫
B(R′)

|∇(f
m
2 η)|2dμt +

2

m

∫
B(R′)

|∇η|2fmdμt.(3.6)
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Thus by (3.5) and (3.6) we obtain

1

m

∂

∂t

∫
B(R′)

fmη2dμt ≤ − 2

m

∫
B(R′)

|∇(f
m
2 η)|2dμt

+β

∫
B(R′)

fmη2dμt +
2

m

∫
B(R′)

|∇η|2fmdμt.

This implies

∂

∂t

∫
B(R′)

fmη2dμt +

∫
B(R′)

|∇(f
m
2 η)|2dμt

≤ 2

∫
B(R′)

|∇η|2fmdμt + βm

∫
B(R′)

fmη2dμt.(3.7)

For any 0 < τ < τ ′ < T0, define a function ψ on [0, T0] by

ψ(t) =

⎧⎨⎩
0 0 ≤ t ≤ τ,
t−τ
τ ′−τ τ ≤ t ≤ τ ′,

1 τ ′ ≤ t ≤ T0.

Then from (3.7) we get

∂

∂t

(
ψ

∫
B(R′)

fmη2dμt

)
+ ψ

∫
B(R′)

|∇(f
m
2 η)|2dμt

≤ 2ψ

∫
B(R′)

|∇η|2fmdμt + (βmψ + ψ′)

∫
B(R′)

fmη2dμt.(3.8)

For any t ∈ [τ ′, T0], integrating both sides of (3.8) on [τ, t] implies∫
B(R′)

fmη2dμt +

∫ t

τ ′

∫
B(R′)

|∇(f
m
2 η)|2dμtdt

≤ 2

∫ T0

τ

∫
B(R′)

|∇η|2fmdμtdt

+

(
βm+

1

τ ′ − τ

)∫ T0

τ

∫
B(R′)

fmη2dμtdt.(3.9)

By the Sobolev inequality in Lemma 3.2, we obtain

(∫
B(R′)

f
mn
n−2 η

2n
n−2 dμt

)n−2
n

= ||f m
2 η||22n

n−2

≤ 4(n− 1)2(1 + s)C2(n)

(n− 2)2
||∇(f

m
2 η)||22

+CC2(n)
(
1 +

1

s

)
||f m

2 η||22,(3.10)



MEAN CURVATURE FLOW IN HIGHER CODIMENSION 2239

where C depends on n and sup(x,t)∈M×[0,T0] |A|. Combining (3.9) and (3.10) implies
that ∫ T0

τ ′

∫
B(R′)

fm(1+ 2
n )η2(1+

2
n )dμtdt

≤
∫ T0

τ ′

(∫
B(R′)

fmη2dμt

) 2
n
(∫

B(R′)

f
nm
n−2 η

2n
n−2μt

)n−2
n

dt

≤ max
t∈[τ ′,T0]

(∫
B(R′)

fmη2dμt

) 2
n

×
∫ T0

τ

[
4(n− 1)2(1 + s)C2(n)

(n− 2)2
||∇(f

m
2 η)||22

+CC2(n)
(
1 +

1

s

)
||f m

2 η||22
]
dt

≤ C max
t∈[τ ′,T0]

(∫
B(R′)

fmη2dμt

) 2
n

×
∫ T0

τ

[
||∇(f

m
2 η)||22 + ||f m

2 η||22
]
dt

≤ C

[
2

∫ T0

τ

∫
B(R′)

|∇η|2fmdμtdt

+
(
βm+

1

τ ′ − τ

)∫ T0

τ

∫
B(R′)

fmη2dμtdt

]1+ 2
n

,(3.11)

where s = 1 and C is a constant depending only on n and sup(x,t)∈M×[0,T0] |A|.
Note that |∇η|g(t) ≤ |∇η|2g(0)elt, where l = max0≤t≤T0

||∂g∂t ||g(t). Thus∫ T0

τ

∫
B(R′)

|∇η|2fmdμtdt ≤
∫ T0

τ

∫
B(R′)

|∇η|2g(0)eltfmdμtdt

≤ eCT0

(R′ −R)2

∫ T0

τ

∫
B(R′)

fmdμtdt

for some positive constant C depending on n and sup(x,t)∈M×[0,T0] |A|. This to-

gether with (3.11) implies that∫ T0

τ

∫
B(R)

fm(1+ 2
n )dμtdt ≤ C

(
βm+

1

τ ′ − τ
+

2eCT0

(R′ −R)2

)1+ 2
n

×
(∫ T0

τ

∫
B(R′)

fmdμtdt

)1+ 2
n

,(3.12)

where C is a positive constant depending on n and sup(x,t)∈M×[0,T0] |A|.
Putting L(m, t,R) =

∫ T0

t

∫
B(R)

fmdμtdt, we have from (3.12)

L
(
m
(
1 +

2

n

)
, τ ′, R

)
≤ C

(
βm+

1

τ ′ − τ
+

2eCT0

(R′ −R)2

)1+ 2
n

×L(m, τ,R′)1+
2
n .(3.13)

We set

μ = 1 +
2

n
, mk =

n+ 2

2
μk, τk =

(
1− 1

μk+1

)
t, Rk =

R′

2

(
1 +

1

μk/2

)
.
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Then it follows from (3.13) that

L(mk+1, τk+1, Rk+1)
1

mk+1

≤ C
1

mk+1

[
(n+ 2)β

2
+

μ2

μ− 1
· 1
t
+

4eCT0

R′2 · μ

(
√
μ− 1)2

] 1
mk

× μ
k

mk L(mk, τk, Rk)
1

mk .

Hence

L(md+1, τd+1, Rd+1)
1

md+1

≤ C
∑d

k=0
1

mk+1

[
(n+ 2)β

2
+

μ2

μ− 1
· 1
t
+

4eCT0

R′2 · μ

(
√
μ− 1)2

]∑d
k=0

1
mk

×μ
∑d

k=0
k

mk L(m0, τ0, R0)
1

m0 .(3.14)

As d → +∞, we conclude from (3.14) that

f(x0, t) ≤ C
n

n+2

(
C +

1

t
+

eCT0

R′2

)
×
(
1 +

2

n

)n
2

(∫ T0

0

∫
Mt

f
n+2
2 dμtdt

) 2
n+2

(3.15)

for some positive constant C depending on n, sup(x,t)∈M×[0,T0] |A|, K1 and K2.

Note that we choose R′ sufficiently small such that

K2(n+ 1)
2
n (ω−1

n Volg(0)(B(R′)))
2
n ≤ 1(3.16)

and

2K
− 1

2
2 sin−1 K

1
2
2 (n+ 1)

1
n (ω−1

n Volg(0)(B(R′)))
1
n ≤ iN .(3.17)

For g(0), there is a nonpositive constant K depending on n, maxx∈M0
|A|, K1 and

K2 such that the sectional curvature of M0 is bounded from below by K. By the
Bishop-Gromov volume comparison theorem, we have

Volg(0)(B(R′)) ≤ VolK(B(R′)),

where VolK(B(R′)) is the volume of a ball with radius R′ in the n-dimensional
complete simply connected space form with constant curvature K. Let R′ be the
largest number such that

K2(n+ 1)
2
n (ω−1

n VolK(B(R′)))
2
n ≤ 1

and

2K
− 1

2
2 sin−1 K

1
2
2 (n+ 1)

1
n (ω−1

n VolK(B(R′)))
1
n ≤ iN .

Then R′ depends only on n, K1, K2, iN and sup(x,t)∈M×[0,T0] |A|, and Volg(0)(B(R′))

satisfies (3.16) and (3.17). This together with (3.15) implies

max
(x,t)∈M×[

T0
2 ,T0]

|H|2(x, t) ≤ C

(∫ T0

0

∫
Mt

|H|n+2dμtdt

) 2
n+2

,

where C is a constant depending on n, T0 and sup(x,t)∈M×[0,T0] |A|, K1, K2 and
iN . �
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Now we give a sufficient condition that assures the extension of the mean curva-
ture flow of submanifolds in a Riemannian manifold.

Theorem 3.4. Let Ft : M
n → Nn+q (n ≥ 3) be the mean curvature flow solution of

closed submanifolds in a finite time interval [0, T ), where N has bounded geometry.
If

(i) there exist positive constants a and b such that |A|2 ≤ a|H|2 + b for t ∈ [0, T )
and

(ii) ||H||α,M×[0,T ) =
(∫ T

0

∫
Mt

|H|αdμtdt
) 1

α

< ∞ for some α ≥ n+ 2,

then this flow can be extended over time T .

Proof. By Hölder’s inequality, it is sufficient to prove the theorem for α = n + 2.
We will argue by contradiction.

Suppose that the solution of the mean curvature flow can’t be extended over T .
Then the second fundamental form becomes unbounded as t → T . From assumption
(i), |H|2 is unbounded also.

We choose a sequence of points (x(i), t(i)) ∈ M × [0, T ) such that t(i) ↗ T as
i → ∞ and for each i, x(i) satisfies

|H|2(x(i), t(i)) = max
(x,t)∈M×[0,t(i)]

|H|2(x, t).

Put

Q(i) = |H|2(x(i), t(i)).

Then {Q(i)}∞i=1 is a nondecreasing sequence and limi→∞ Q(i) = ∞. This together

with limi→∞ t(i) = T > 0 implies that there exists a positive integer i0 such that
Q(i)t(i) ≥ 1 and Q(i) ≥ 1 for i ≥ i0. Let h be the Riemannian metric on N . For
i ≥ i0 and t ∈ [0, 1], we consider the rescaled mean curvature flows

F (i)(t) = F

(
t− 1

Q(i)
+ t(i)

)
: (M, g(i)(t)) → (N,Q(i)h),

where g(i)(t) = F (i)(t)∗(Q(i)h). Let H(i) and A(i) = h
(i)
jk be the mean curvature

vector and the second fundamental form of F (i)(t) respectively. Then we have

|H(i)|2(x, t) ≤ 1 on M × [0, 1].(3.18)

From assumption (i) again, inequality (3.18) implies |A(i)| ≤ C, where C is a
constant independent of i. Since (N, h) has bounded geometry and Q(i) ≥ 1 for
i ≥ i0, (N,Q(i)h) also has bounded geometry for i ≥ i0 with the same bounding
constants as (N, h). It follows from Lemma 3.3 that for i ≥ i0,

max
(x,t)∈M(i)×[ 12 ,1]

|H(i)|2(x, t) ≤ C

(∫ 1

0

∫
Mt

|H(i)|n+2dμg(i)(t)dt

) 2
n+2

,

where C is a constant independent of i.
By [5], there is a subsequence of pointed mean curvature flow solutions

F (i)(t) : (M, g(i)(t), x(i)) → (N,Q(i)h), t ∈ [0, 1]

that converges to a pointed mean curvature flow solution

F̃ (t) : (M̃, g̃(t), x̃) → R
n+q, t ∈ [0, 1].
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Denote by H̃ the mean curvature vector of F̃ , t ∈ [0, 1]. Then we have

max
(x,t)∈M̃×[ 12 ,1]

|H̃|2(x, t) ≤ lim
i→∞

C

(∫ 1

0

∫
Mt

|H(i)|n+2dμg(i)(t)dt

) 2
n+2

≤ lim
i→∞

C

(∫ t(i)+(Q(i))−1

t(i)

∫
Mt

|H(i)|n+2dμdt

) 2
n+2

= 0.(3.19)

The equality in (3.19) holds because
∫ T

0

∫
Mt

|H|n+2dμtdt < +∞ and (Q(i))−1 → 0
as i → ∞. On the other hand, according to the choice of the points, we have

|H̃ |2(x̃, 1) = lim
i→∞

|H(i)|2(x(i), 1) = 1.

This is a contradiction. �
Remark 3.5. When q = 1, Theorem 3.4 generalizes the theorems in [12, 27, 28]. In
fact, for Nn+1 = R

n+1, we have the following computations.
(i) If hij ≥ −C for (x, t) ∈ M × [0, T ) with some C ≥ 0, let λi, i = 1, . . . , n, be

the principal curvatures. Then λi + C ≥ 0, which implies that∑
i

(λi + C)2 ≤ n(
∑
i

(λi + C))2 ≤ 2nH2 + 2n3C2.

On the other hand,∑
i

(λi + C)2 = |A|2 + 2CH + nC2 ≥ |A|2 −H2 + (n− 1)C2.

Hence |A|2 ≤ (2n+ 1)H2 + (2n3 − n+ 1)C2 for t ∈ [0, T ).
(ii) If H > 0 at t = 0, then there exists a positive constant C such that |A|2 ≤

CH2 at t = 0. By [9], we know that H > 0 for t > 0 and

∂

∂t

(
|A|2
H2

)
= Δ

(
|A|2
H2

)
+

2

H

〈
∇H,∇

(
|A|2
H2

)〉
− 2

H4
|H∇ihjk −∇iH · hjk|2.

By the maximum principle we obtain that |A|2/H2 is uniformly bounded from
above by its initial data. Hence |A|2 ≤ CH2 for t ∈ [0, T ).

For general Nn+1 with bounded geometry, we have similar computations. Hence
our Theorem 3.4 is a generalization.

At the end of this section, we would like to propose the following.

Open Problem 3.6. Let Ft : M → N be the mean curvature flow solution of
closed submanifolds in a finite time interval [0, T ). Suppose ||H||α,M×[0,T ) < ∞
for some α ≥ n+ 2. Is there a positive constant ω such that the solution exists in
[0, T + ω)?

4. The convergence of mean curvature flow

In this section we obtain several convergence theorems for the mean curvature
flow. The extension theorem proved in Section 3 will be used to give a positive
lower bound on the existence time of the mean curvature flow.

We need the following Sobolev inequality for submanifolds in the Euclidean
space, which is a consequence of the famous Sobolev inequality due to Michael-
Simon [13].
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Lemma 4.1. Let M be an n(≥ 3)-dimensional closed submanifold in R
n+q. Then

for all Lipschitz functions v on M , we have(∫
M

v
2n

n−2 dμ

)n−2
n

≤ Cn

(∫
M

|∇v|2dμ+

∫
M

|H|n+2dμ

∫
M

v2dμ

)
,

where Cn is a positive constant depending only on n.

Proof. The proof of the lemma for q = 1 was given in [12]. Using the same method
we can prove the lemma for q > 1. �

Now we begin to prove Theorem 1.1, which is restated as follows.

Theorem 4.2. Let F0 : Mn → R
n+q (n ≥ 3) be a smooth closed submanifold. Then

for any fixed p > 1, there is a positive constant C1 depending on n, p,Vol(M0) and
||A||n+2, such that if

||Å||p < C1,

then the mean curvature flow with F0 as initial value has a unique solution F : M×
[0, T ) → R

n+q in a finite maximal time interval, and Ft(M) converges uniformly

to a point x ∈ R
n+q as t → T . The rescaled immersions F̃t =

Ft−x√
2n(T−t)

converge

in C∞-topology to a limiting embedding F̃T such that F̃T (M) is the unit n-sphere
in some (n+ 1)-dimensional subspace of Rn+q.

Proof. We set Λ = ||A||n+2. Denote by Tmax the maximal existence time of the
mean curvature flow with F0 as initial value. It is easy to show that Tmax < +∞
(see [24] for a proof).

We split the proof into several steps.

Step 1. For any fixed positive number ε, we first show that if

||Å||p < ε

for some p > 1, then Tmax satisfies Tmax > T0 for some positive constant T0 depend-
ing on n, p, Λ and independent of ε, and there hold ||A(t)||n+2 < 2Λ, ||Å(t)||p < 2ε
for t ∈ [0, T0].

Put

T = sup{t ∈ [0, Tmax) : ||A(t)||n+2 < 2Λ, ||Å(t)||p < 2ε}.
We consider the mean curvature flow on the time interval [0, T ).

By the definition of T we have
∫
Mt

|A|n+2dμt ≤ (2Λ)n+2 for t ∈ [0, T ). From

Lemma 4.1 we have for a Lipschitz function v,

(4.1)

(∫
Mt

v
2n

n−2 dμt

)n−2
n

≤ Cn

(∫
Mt

|∇v|2dμt + n
n+2
2 (2Λ)n+2

∫
Mt

v2dμt

)
.

From (2.2), we have

∂

∂t
|A|2 ≤ Δ|A|2 + c1|A|4

for some positive constant c1 depending only on n. Putting u = |A|2, we have

∂

∂t
u ≤ Δu+ c1u

2.(4.2)
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From (4.2) and (2.1) we have

∂

∂t

∫
Mt

u
n+2
2 dμt =

∫
Mt

n+ 2

2
u

n+2
2 −1 ∂

∂t
udμt +

∫
Mt

u
n+2
2

∂

∂t
dμt

≤ n+ 2

2

∫
Mt

u
n+2
2 −1(Δu+ cu2)dμt −

∫
Mt

H2u
n+2
2 dμt

≤ − 4n

n+ 2

∫
Mt

|∇u
n+2
4 |2dμt +

n+ 2

2
c1

∫
Mt

u
n+2
2 +1dμt.(4.3)

For the second term of the right hand side of (4.3), we have by Hölder’s inequality∫
Mt

u
n+2
2 +1dμt ≤

(∫
Mt

u
n+2
2 dμt

) 2
n+2

·
(∫

Mt

(u
n+2
2 )

n+2
n dμt

) n
n+2

≤
(∫

Mt

u
n+2
2 dμt

) 2
n+2

·
(∫

Mt

u
n+2
2 dμt

) 2
n+2

·
(∫

Mt

(u
n+2
4 )

2n
n−2 dμt

)n−2
n+2

≤
(∫

Mt

u
n+2
2 dμt

) 2
n+2

·
(∫

Mt

u
n+2
2 dμt

) 2
n+2

×
[
Cn

(∫
Mt

|∇u
n+2
4 |2dμt + n

n+2
2 (2Λ)n+2

∫
Mt

u
n+2
2 dμt

)] n
n+2

≤
(∫

Mt

u
n+2
2 dμt

) 4
n+2

·
[
C

n
n+2
n

(∫
Mt

|∇u
n+2
4 |2dμt

) n
n+2

+ n
n
2 (2Λ)nC

n
n+2
n

(∫
Mt

u
n+2
2 dμt

) 2n
n+2

]
≤ n

n
2 (2Λ)nC

n
n+2
n

(∫
Mt

u
n+2
2 dμt

)2

+ C
n

n+2
n · 2

n+ 2
ε

n+2
2

(∫
Mt

u
n+2
2 dμt

)2

+ C
n

n+2
n · n

n+ 2
ε−

n+2
n

∫
Mt

|∇u
n+2
4 |2dμt(4.4)

for any ε > 0. Combining (4.3) and (4.4), we have

∂

∂t

∫
Mt

u
n+2
2 dμt ≤

n+ 2

2
c1

(
n

n
2 (2Λ)nC

n
n+2
n + C

n
n+2
n · 2

n+ 2
ε

n+2
2

)(∫
Mt

u
n+2
2 dμt

)2

+
(n
2
c1C

n
n+2
n ε−

n+2
n − 4n

n+ 2

)∫
Mt

|∇u
n+2
4 |2dμt.(4.5)

Picking ε =

(
(n+2)c1C

n
n+2
n

8

) n
n+2

, inequality (4.5) reduces to

∂

∂t

∫
Mt

|A|n+2dμt ≤ c2

(∫
Mt

|A|n+2dμt

)2

,(4.6)

where c2 = n+2
2 c1

(
n

n
2 (2Λ)nC

n
n+2
n + C

n
n+2
n · 2

n+2

(
(n+2)c1C

n
n+2
n

8

)n
2
)
.

From (4.6), we see by the maximum principle that, for t ∈ [0,min{T, T1}), where
T1 =

1−( 2
3 )

n+2

c2Λn+2 , there holds

||A(t)||n+2 <
3

2
Λ.(4.7)
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Now we consider the evolution equation of |Å|2. By a simple computation, we
have

∂

∂t
|Å|2 ≤ Δ|Å|2 − 2|∇Å|2 + c3|A|2|Å|2,(4.8)

where c3 ≥ c1 is a positive constant depending only on n.

Define a tensor
˜̊
A by

˜̊
Aα

ij = Åα
ij + σηαδij , where ηα = 1. Set hσ = | ˜̊A| =

(|Å|2 + ndσ2)
1
2 . Then from (4.8) we have

∂

∂t
hσ ≤ Δhσ + c3|A|2hσ.(4.9)

For any r ≥ p > 1, we have

1

r

∂

∂t

∫
Mt

hr
σdμt =

∫
Mt

hr−1
σ

∂

∂t
hσdμt +

1

r

∫
Mt

hp
σ

∂

∂t
dμt

≤ −4(r − 1)

r2

∫
Mt

|∇h
r
2
σ |2dμt + c3

∫
Mt

|A|2hr
σdμt.(4.10)

For the second term of the right hand side of (4.10), we have the following
estimate:∫

Mt

|A|2hr
σdμt ≤

(∫
Mt

|A|n+2dμt

) 2
n+2

·
(∫

Mt

h
r·n+2

n
σ dμt

) n
n+2

≤ (2Λ)2
(∫

Mt

hr
σdμt

) 2
n+2

·
(∫

Mt

(hr
σ)

n
n−2 dμt

)n−2
n · n

n+2

≤ (2Λ)2
(∫

Mt

hr
σdμt

) 2
n+2

·
[
Cn

(∫
Mt

|∇h
r
2
σ |2dμt

+n
n+2
2 (2Λ)n+2

∫
Mt

hr
σdμt

)] n
n+2

≤ (2Λ)2
(∫

Mt

hr
σdμt

) 2
n+2

·
[
C

n
n+2
n

(∫
Mt

|∇h
r
2
σ |2dμt

) n
n+2

+n
n
2 (2Λ)nC

n
n+2
n

(∫
Mt

hr
σdμt

) n
n+2

]
= n

n
2 (2Λ)n+2C

n
n+2
n

∫
Mt

hr
σdμt

+(2Λ)2C
n

n+2
n

(∫
Mt

hr
σdμt

) 2
n+2

·
(∫

Mt

|∇h
r
2
σ |2dμt

) n
n+2

≤ n
n
2 (2Λ)n+2C

n
n+2
n

∫
Mt

hr
σdμt

+(2Λ)2C
n

n+2
n · 2

n+ 2
μ

n+2
2

∫
Mt

hr
σdμt

+(2Λ)2C
n

n+2
n · n

n+ 2
μ−n+2

n

∫
Mt

|∇h
r
2
σ |2dμt(4.11)
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for any μ > 0. Therefore, combining (4.10) and (4.11) we have

1

r

∂

∂t

∫
Mt

hr
σdμt ≤

(
c3(2Λ)

2C
n

n+2
n · n

n+ 2
μ−n+2

n − 4(r − 1)

r2

)∫
Mt

|∇h
r
2
σ |2dμt

+c3

(
n

n
2 (2Λ)n+2C

n
n+2
n + (2Λ)2C

n
n+2
n · 2

n+ 2
μ

n+2
2

)∫
M

hr
σdμt.(4.12)

Choose μ =
(

c4r
2p

3rp−4p+r

) n
n+2

, where c4 = c3(2Λ)
2C

n
n+2
n · n

n+2 . Then from (4.12), we

have

∂

∂t

∫
Mt

hr
σdμt +

(
1− 1

p

)∫
Mt

|∇h
r
2
σ |2dμt

≤
(
c5 + c6

( r2p

3rp− 4p+ r

)n
2

)
· r ·

∫
M

hr
σdμt,(4.13)

where c5 = c3(2Λ)
2C

n
n+2
n and c6 = c3n

n
2 (2Λ)n+2C

n
n+2
n · 2

n+2 · c
n
2
4 .

If we pick r = p, then (4.13) reduces to

∂

∂t

∫
Mt

hp
σdμt ≤ c7

∫
M

hp
σdμt,(4.14)

where c7 =

(
c5 + c6

(
p2

3p−3

)n
2

)
· p. Letting σ → 0, (4.14) becomes

∂

∂t

∫
Mt

|Å|pdμt ≤ c7

∫
M

|Å|pdμt.

This implies by the maximum principle that, for t ∈ [0,min{T, T2}), where T2 =
p ln 3

2

c7
, there holds

||Å(t)||p <
3

2
ε.(4.15)

Set T0 = min{T1, T2}. We claim that T > T0. We prove this claim by contradic-
tion. Suppose that T ≤ T0. Then (4.7) and (4.15) hold on [0, T ).

If T < Tmax, from the smoothness of the mean curvature flow we see that there
exists a positive constant ϑ such that on [0, T + ϑ) we have

||A(t)||n+2 <
5

3
Λ, ||Å(t)||p <

5

3
ε.

This contradicts the definition of T .
If T = Tmax, we will show that the mean curvature flow can be extended over

time Tmax.
From (4.13), we have

(4.16)
∂

∂t

∫
Mt

hr
σdμt +

(
1− 1

p

)∫
Mt

|∇h
r
2
σ |2dμt ≤ c8r

n+1 ·
∫
M

hr
σdμt,

where c8 = max{ c5
pn ,

c6
(3p−3)

n
2
}.

As in the proof of Lemma 3.3, for any τ, τ ′ such that 0 < τ < τ ′ < Tmax− θ, and
for any t ∈ [τ ′, Tmax − θ], where θ is a small positive constant, we have from (4.16)
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that ∫
Mt

hr
σdμt +

(
1− 1

p

)∫ t

τ ′

∫
Mt

|∇h
r
2
σ |2dμtdt

≤
(
c8r

n+1 +
1

τ ′ − τ

)∫ Tmax−θ

τ

∫
Mt

hr
σdμtdt.(4.17)

As in (3.11), we have by (4.1)∫ Tmax−θ

τ ′

∫
Mt

h
r(1+ 2

n )
σ dμtdt

≤
∫ Tmax−θ

τ ′

(∫
Mt

hr
σdμt

) 2
n

·
(∫

Mt

h
nr

n−2
σ dμt

)n−2
n

dt

≤ max
t∈[τ ′,Tmax−θ]

(∫
Mt

hr
σdμt

) 2
n

·
∫ Tmax−θ

τ ′

(∫
Mt

h
nr

n−2
σ dμt

)n−2
n

dt

≤ Cn · max
t∈[τ ′,Tmax−θ]

(∫
Mt

hr
σdμt

) 2
n

×
∫ Tmax−θ

τ ′

(∫
Mt

|∇h
r
2
σ |2dμt + n

n+2
2 (2Λ)n+2

∫
Mt

hr
σdμt

)
dt.(4.18)

From (4.17) and (4.18), we have∫ Tmax−θ

τ ′

∫
Mt

h
r(1+ 2

n )
σ dμtdt ≤ c9

(
c8r

n+1 +
1

τ ′ − τ

)1+ 2
n

×
(∫ Tmax−θ

τ

∫
Mt

hr
σdμtdt

)1+ 2
n

,(4.19)

where c9 = Cn ·max{ p
p−1 , n

n+2
2 (2Λ)n+2T0}.

We put

J(r, t) =

∫ Tmax−θ

t

∫
Mt

hr
σdμtdt.

Then from (4.19) we have

(4.20) J
(
r
(
1 +

2

n

)
, τ ′

)
≤ c9

(
c8r

n+1 +
1

τ ′ − τ

)1+ 2
n

J(r, τ )1+
2
n .

We let

μ = 1 +
2

n
, rk = pμk, τk =

(
1− 1

μk+1

)
t.

Notice that μ > 1. From (4.20) we have

J(rk+1, τk+1)
1

rk+1 ≤ c
1

rk+1

9

(
c8p

n+1 +
μ2

μ− 1
· 1
t

) 1
rk

μ
k
rk

·(n+1)
J(rk, τk)

1
rk .
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Hence

J(rd+1, τd+1)
1

rd+1 ≤ c

∑d
k=0

1
rk+1

9

(
c8p

n+1 +
μ2

μ− 1
· 1
t

)∑d
k=0

1
rk

×μ
(n+1)·

∑d
k=0

k
rk J(p, t)

1
p .

As d → +∞, we conclude that

hσ(x, t) ≤
(
1 +

2

n

)n(n+1)(n+2)
4p

c
n
2p

9

(
c8p

n+1 +
(n+ 2)2

2nt

)n+2
2p

×
(∫ Tmax−θ

0

∫
Mt

hp
σdμtdt

) 1
p

.(4.21)

Now let σ → 0 and θ → 0. Then we have for t ∈ [Tmax

2 , Tmax),

|Å|2(x, t) ≤ C(n, p,Λ, ε, Tmax) < +∞.

This implies that

|A|2 ≤ a|H|2 + b

on [0, Tmax) for some positive constants a and b independent of t. On the other
hand, we also have ∫ Tmax

0

∫
Mt

|H|n+2dμtdt < +∞,

since Tmax < +∞. Now we apply Theorem 3.4 to conclude that the mean curvature
flow can be extended over time Tmax. This is a contradiction. This completes the
proof of the claim.

By the definition of T , for t ∈ [0, T0], we also have

||A(t)||n+2 < 2Λ, ||Å(t)||p < 2ε.(4.22)

This completes Step 1.

Step 2. We denote by Vol(Σ) the volume of a Riemannian manifold Σ and set
V = Vol(M0). In this step we show that if we choose ε sufficiently small, then at
some time T3 ∈ [T0

2 , T0], the mean curvature is bounded from below by a positive
constant depending on n, p, V and Λ.

Since the area of the submanifold is nonincreasing along the mean curvature
flow, we see that for t ∈ [0, Tmax), there holds

Vol(Mt) ≤ V.(4.23)

Since Mt is a closed submanifold in the Euclidean space, by the Chen-Willmore
inequality for the total mean curvature (for the proof see [3]), we have

nnVol(Sn) ≤
∫
Mt

|H|ndμt ≤ |H|nmax(t)Vol(Mt) ≤ |H|nmax(t)V.

Here |H|max(t) = maxMt
|H|(·, t). This implies that for t ∈ [0, Tmax), there holds

|H|2max(t) ≥ nnVol(Sn)V −1 := c10.(4.24)
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On the other hand, by [20] there is a positive constant c11 depending only on n
such that for t ∈ [0, Tmax), we have

diam(Mt) ≤ c11

∫
Mt

|H|n−1dμt,

where diam(Mt) denotes the diameter of Mt. This together with the Hölder in-
equality, (4.22) and (4.23) implies for t ∈ [0, Tmax)

diam(Mt) ≤ c11n
n−1
2 (2Λ)n−1V

3
n+2 := c12.(4.25)

Since T > T0, we consider the mean curvature flow on [T0

2 , T0].

As in (4.21), we have for t ∈ [T0

2 , T0]

|Å| ≤
(
1 +

2

n

)n(n+1)(n+2)
4p

c
n
2p

9

(
c8p

n+1 +
(n+ 2)2

nT0

)n+2
2p

· T
1
p

0 · 2ε

:= c13ε.(4.26)

Here c13 depends on n, p, V,Λ and is independent of ε.
For u = |A|2, since c1 ≤ c3, we have by (4.2)

∂

∂t
u ≤ Δu+ c3|A|2u.(4.27)

Then by a standard Moser iteration process as for hσ in Step 1, we have for t ∈
[T0

2 , T0]

|A|2 ≤
(
1 +

2

n

)n(n+1)
2

c
n

n+2

15

(
c14

(n+ 2

2

)n+1

+
(n+ 2)2

nT0

)
· T

2
n+2

0 · 2Λ

:= c16.(4.28)

Here c14 = max{ c52
n

(n+2)n ,
c62

n
2

(3n)
n
2
}, and c15 = Cn ·max{n+2

n , n
n+2
2 (2Λ)n+2T0}.

Set

G =
(
t− T0

2

)
|∇Å|2 + |Å|2.

We consider the evolution inequality of G on [T0

2 , T0].
As in [1], we have

∇t(∇Å) = ∇(∇tÅ) + A ∗A ∗ ∇A.

Here ∇ is the connection on the spatial vector bundle, which for each t agrees with
the Levi-Civita connection of g(t). The evolution equation of Å is

∇tÅ = ΔÅ+A ∗A ∗A.

On the other hand, we have

∇(ΔÅ) = Δ(∇Å) +A ∗A ∗ ∇A.

Hence

∇t(∇Å) = Δ(∇Å) +A ∗A ∗ ∇A.

This implies

∂

∂t
|∇Å|2 ≤ Δ|∇Å|2 + c17|A|2|∇Å|2,(4.29)
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where c17 is a positive constant depending only on n. Here we have used the
inequality |∇A|2 ≤ 3n

2(n−1) |∇Å|2, which was proved in [1].

Combining (4.8) and (4.29) we have

∂

∂t
G ≤ ΔG+

((
t− T0

2

)
c17|A|2 − 1

)
|∇Å|2 + c3|A|2|Å|2.(4.30)

From (4.26), (4.28) and (4.30), we have for t ∈ [T0

2 , T0]

∂

∂t
G ≤ ΔG+

((
t− T0

2

)
c17c16 − 1

)
|∇Å|2 + c3c16c

2
13ε

2.(4.31)

Set T3 = min{T0,
T0

2 + 1
c17c16

}. Then T0

2 ≤ T3 ≤ T0. For t ∈ [T0

2 , T3], we have from

(4.31)

∂

∂t
G ≤ ΔG+ c3c16c

2
13ε

2.

By the maximum principle, this implies

G(t)−G
(T0

2

)
≤ c3c16c

2
13

(
t− T0

2

)
ε2

for t ∈ [T0

2 , T3]. Hence(
t− T0

2

)
|∇Å|2 ≤ |Å|2

(T0

2

)
+ c3c16c

2
13

(
t− T0

2

)
ε2

≤ c213ε
2 + c3c16c

2
13

(
t− T0

2

)
ε2.

Then for t ∈ (T0

2 , T3], there holds

|∇Å|2 ≤ c213(
t− T0

2

)ε2 + c3c16c
2
13ε

2.(4.32)

On the other hand, from [1], we know that |∇H|2 ≤ 3n2

2(n−1) |∇Å|2. Therefore, (4.32)
implies that at t = T3, we have

|∇H|2 ≤ 3n2

2(n− 1)
·
(

c213(
T3 − T0

2

) + c3c16c
2
13

)
ε2 := c218ε

2.(4.33)

Now we consider the submanifoldMT3
at time T3. Let x, y ∈ MT3

be two points such
that |H|(x, T3) = |H|min(T3) := minMT3

|H|(·, T3) and |H|(y, T3) = |H|max(T3) :=

maxMT3
|H|(·, T3). Let l : [0, L] → MT3

be the shortest geodesic such that l(0) = x

and l(L) = y. Define a function η : [0, L] → R by η(s) = |H|2(l(s), T3) for s ∈ [0, L].
Then η(0) = |H|2min(T3) and η(L) = |H|2max(T3). By the definition of η, we have∣∣∣∣ ddsη(s)

∣∣∣∣ = ∣∣∣∣ dds |H|2(l(s), T3)

∣∣∣∣ ≤ ∣∣∣∣(∇|H|2)(l(s), T3)

∣∣∣∣ ≤ ∣∣∣∣2(|H||∇H|)(l(s), T3)

∣∣∣∣.
This together with (4.28) and (4.33) implies∣∣∣∣ ddsη(s)

∣∣∣∣ ≤ 2n
1
2 c16c18ε.
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Then we have

(4.34) η(L)− η(0) =

∫ L

0

d

ds
ηds ≤ diam(MT3

) · 2n 1
2 c16c18ε.

Combining (4.24), (4.25) and (4.34), we obtain

|H|2min(T3) ≥ c10 − c19ε,(4.35)

where c19 = 2n
1
2 c16c18c12. We put

ε1 =
c10
2c19

.

Then if ε ≤ ε1, (4.35) implies that

|H|2min(T3) ≥
c10
2

.(4.36)

Step 3. In this step, we finish the proof of Theorem 4.2.
Consider the submanifold MT3

. Set

ε2 =
c

1
2
10

[2n(n− 1)]
1
2 c13

for n ≥ 4, and ε2 =
c

1
2
10

3
√
2c13

for n = 3.

By (4.26) and (4.36), we see that if ε ≤ min{ε1, ε2}, then

|A|2(T3) ≤ c213ε
2
2 +

1

n
|H|2(T3) ≤

|H|2(T3)

n− 1
for n ≥ 4,

and

|A|2(T3) ≤
4

9
|H|2(T3) for n = 3.

We pick C1 = min{ε1, ε2}, which depends only on n, p, V and Λ. Then by the
uniqueness of the mean curvature flow and the convergence theorem proved in [1],
we conclude that the mean curvature flow with initial value F0 converges to a round
point in finite time. This completes the proof of Theorem 4.2. �
Corollary 4.3. Let F0 : Mn → R

n+q (n ≥ 3) be a smooth closed submanifold.
Suppose that the mean curvature is nowhere vanishing. Then for any fixed p > 1,
there is a positive constant C ′

1 depending on n, p, minM0
|H| and ||A||n+2, such

that if

||Å||p < C ′
1,

then the mean curvature flow with F0 as initial value has a unique solution F : M×
[0, T ) → R

n+q in a finite maximal time interval, and Ft(M) converges uniformly

to a point x ∈ R
n+q as t → T . The rescaled immersions F̃t =

Ft−x√
2n(T−t)

converge

in C∞-topology to a limiting embedding F̃T such that F̃T (M) is the unit n-sphere
in some (n+ 1)-dimensional subspace of Rn+q.

Proof. It is easy to see that we can choose C1 in Theorem 4.2 such that C1 =
C1(n, p, V, ||A||n+2) depending on n, p, ||A||n+2 and the upper bound V of the
volume of M0. Since

||A||n+2 ≥ n
1
2 ||H||n+2 ≥ n

1
2Vol(M0)

1
n+2 min

M0

|H|,

we have

Vol(M) ≤ n−n+2
2 (min

M0

|H|)−(n+2)||A||n+2
n+2 := V ′.
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Then by Theorem 4.2, we can pick C ′
1 = C1(n, p, V

′, ||A||n+2), which depends on
n, p, minM0

|H| and ||A||n+2. �

We restate Theorem 1.2 and give the proof as follows.

Theorem 4.4. Let F0 : Mn → R
n+q (n ≥ 3) be a smooth closed submanifold. Then

for any fixed p > n, there is a positive constant C2 depending on n, p,Vol(M0) and
||H||n+2, such that if

||Å||p < C2,

then the mean curvature flow with F0 as initial value has a unique solution F : M×
[0, T ) → R

n+q in a finite maximal time interval, and Ft(M) converges uniformly

to a point x ∈ R
n+q as t → T . The rescaled immersions F̃t =

Ft−x√
2n(T−t)

converge

in C∞-topology to a limiting embedding F̃T such that F̃T (M) is the unit n-sphere
in some (n+ 1)-dimensional subspace of Rn+q.

Proof. The idea to prove Theorem 4.4 is similar to the proof of Theorem 4.2. We
set Λ = ||H||n+2. Suppose

||Å||p < ε

for some fixed p > n and assume ε ∈ (0, 100]. Set

T ′ = sup{t ∈ [0, Tmax) : ||H||n+2 < 2Λ, ||Å||p < 2ε}.
As in the proof of Theorem 4.2, we consider the mean curvature flow on the time
interval [0, T ′).

For |H|2, we have the inequality (see [1, 22] for the derivation)

∂

∂t
|H|2 ≤ Δ|H|2 − 2|∇H|2 + c20|A|2|H|2

for some positive constant c20 depending only on n. Set w = |H|2. Then
∂

∂t
w ≤ Δw + c20|Å|2w +

c20
n

w2.(4.37)

From (4.37) we have for r > 1

1

r

∂

∂t

∫
Mt

wrdμt ≤ −4(r − 1)

r2

∫
Mt

|∇w
r
2 |2dμt

+c20

∫
Mt

|Å|2wrdμt +
c20
n

∫
Mt

wr+1dμt.(4.38)

Now we let r = n+2
2 . As in (4.4), we have∫

Mt

w
n+2
2 +1dμt

≤ C
n

n+2
n (2Λ)n

(∫
Mt

w
n+2
2 dμt

)2

+ C
n

n+2
n · 2

n+ 2
ε

n+2
2

(∫
Mt

w
n+2
2 dμt

)2

+ C
n

n+2
n · n

n+ 2
ε−

n+2
n

∫
Mt

|∇w
n+2
4 |2dμt

(4.39)

for any ε > 0.
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As in (4.11), we have∫
Mt

|Å|2w
n+2
2 dμt

≤
(
(200)2C

n
p
n (2Λ)

n(n+2)
p + (200)2C

n
p
n
p− n

p
μ

p
p−n

)∫
Mt

w
n+2
2 dμt

+ (200)2C
n
p
n
n

p
μ− p

n

∫
Mt

|∇w
n+2
4 |2dμt(4.40)

for any μ > 0.
Therefore, combining (4.38), (4.39) and (4.40) we get

2

n+ 2
· ∂

∂t

∫
Mt

w
n+2
2 dμt

≤
(
c20(200)

2C
n
p
n · n

p
· μ− p

n +
c20
n

· C
n

n+2
n · n

n+ 2
ε−

n+2
n

− 8n

(n+ 2)2

)∫
Mt

|∇w
r
2 |2dμt

+c20

(
(200)2C

n
p
n (2Λ)

n(n+2)
p + (200)2C

n
p
n
p− n

p
μ

p
p−n

)∫
Mt

w
n+2
2 dμt

+
c20
n

(
C

n
n+2
n (2Λ)n + C

n
n+2
n · 2

n+ 2
ε

n+2
2

)(∫
Mt

w
n+2
2 dμt

)2

.(4.41)

Now we pick

μ =

(
(200)2(n+ 2)2

4p
· c20C

n
p
n

)n
p

, ε =

(
n+ 2

4n
· c20C

n
n+2
n

) n
n+2

.

Then from (4.41), we have

∂

∂t

∫
Mt

w
n+2
2 dμt ≤ c21

∫
Mt

w
n+2
2 dμt + c22

(∫
Mt

w
n+2
2 dμt

)2

,(4.42)

where

c21 = (200)2c20C
n
p
n

[
(2Λ)

n(n+2)
p +

p− n

p

(
(200)2(n+ 2)2

4p
· c20C

n
p
n

) n
p−n

]
,

c22 =
c20
n

C
n

n+2
n

[
(2Λ)n +

2

n+ 2

(
n+ 2

4n
· c20C

n
n+2
n

)n
2
]
.

Let ρ(t) be the positive solution to the following Bernoulli equation:

d

dt
ρ = c21ρ+ c22ρ

2,

ρ(0) = Λn+2.

Then

ρ(t) =
ec21t

1
Λn+2 + c22

c21
− c22

c21
ec21t

, t ∈
[
0,

ln
(

c21
c22Λn+2 + 1

)
c21

)
.
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Set

T ′
1 =

1

c21
ln

(
1 + c22

c21
Λn+2(

2
3

)n+2
+ c22

c21
Λn+2

)
;

then ρ(t) ≤
(
3
2Λ

)n+2
for t ∈ [0, T ′

1]. By the maximum principle, we see that for
t ∈ [0,min{T ′, T ′

1}), there holds∫
Mt

w
n+2
2 dμt <

(3
2
Λ
)n+2

or, equivalently,

||H(t)||n+2 <
3

2
Λ.

Next, from (4.9) we have

∂

∂t
hσ ≤ Δhσ + c3|Å|2hσ +

c3
n
|H|2hσ.(4.43)

From (4.43) we have for r > 1

1

r

∂

∂t

∫
Mt

hr
σdμt ≤ −4(r − 1)

r2

∫
Mt

|∇h
r
2
σ |2dμt

+c3

∫
Mt

|Å|2hr
σdμt +

c3
n

∫
Mt

|H|2hr
σdμt.(4.44)

As in (4.11), we have for r ≥ p > n and any ν, � > 0 that there hold

∫
Mt

|Å|2hr
σdμt ≤

(∫
Mt

|Å|pdμt

) 2
p
(∫

Mt

(
hr
σ

) p
p−2 dμt

) p−2
p

≤ (2ε)2
(∫

Mt

hr
σdμt

)1−n
p
(∫

Mt

(
hr
σ

) n
n−2 dμt

)n−2
n ·np

≤ (2ε)2
(∫

Mt

hr
σdμt

)1−n
p

×
[
Cn

(∫
Mt

|∇h
r
2
σ |2dμt + (2Λ)n+2

∫
Mt

hr
σdμt

)]n
p

≤ (2ε)2C
n
p
n (2Λ)

n(n+2)
p

∫
Mt

hr
σdμt

+(2ε)2C
n
p
n

[
p− n

p
ν

p
p−n

∫
Mt

hr
σdμt +

n

p
ν−

p
n

(∫
Mt

|∇h
r
2
σ |2dμt

)]
≤

(
(200)2C

n
p
n (2Λ)

n(n+2)
p + (200)2C

n
p
n
p− n

p
ν

p
p−n

)∫
Mt

hr
σdμt

+(200)2C
n
p
n
n

p
ν−

p
n

(∫
Mt

|∇h
r
2
σ |2dμt

)
(4.45)
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and∫
Mt

|H|2hr
σdμt ≤ (2Λ)2

(∫
Mt

hr
σdμt

) 2
n+2

[
C

n
n+2
n

(∫
Mt

|∇h
r
2
σ |2dμt

) n
n+2

+(2Λ)nC
n

n+2
n

(∫
Mt

hr
σdμt

) n
n+2

]
≤ (2Λ)n+2C

n
n+2
n

∫
Mt

hr
σdμt + (2Λ)2C

n
n+2
n

2

n+ 2
�

n+2
2

∫
Mt

hr
σdμt

+(2Λ)2C
n

n+2
n

n

n+ 2
�−

n+2
n

∫
Mt

|∇h
r
2
σ |2dμt.(4.46)

From (4.44), (4.45) and (4.46), we have

1

r

∂

∂t

∫
Mt

hr
σdμt ≤

(
c3(200)

2C
n
p
n
n

p
ν−

p
n +

c3
n
(2Λ)2C

n
n+2
n

n

n+ 2
�−

n+2
n

−4(r − 1)

r2

)∫
Mt

|∇h
r
2
σ |2dμt

+

(
c3(200)

2C
n
p
n (2Λ)

n(n+2)
p + c3(200)

2C
n
p
n
p− n

p
ν

p
p−n

+
c3
n

(
(2Λ)n+2C

n
n+2
n + (2Λ)2C

n
n+2
n

2

n+ 2
�

n+2
2

))∫
Mt

hr
σdμt.(4.47)

Pick

ν
p

n+2 = � =

(
c3(200)

2C
n
p
n · n

p + c3
n (2Λ)2C

n
n+2
n

n
n+2

3r−4
r2

) n
n+2

.

Since r ≥ p > n, then

ν
p

n+2 = � ≤
(
c3(200)

2C
n
p
n · n

p + c3
n (2Λ)2C

n
n+2
n

n
n+2

3p− 4

) n
n+2

· r 2n
n+2 := c23 · r

2n
n+2 .

Then from (4.47), we have

∂

∂t

∫
Mt

hr
σdμt +

∫
Mt

|∇h
r
2
σ |2dμt ≤ c24r

p+n
p−n+n

∫
Mt

hr
σdμt,(4.48)

where

c24 = c3(200)
2C

n
p
n (2Λ)

n(n+2)
p +

c3
n
(2Λ)n+2C

n
n+2
n

+c
n+2
p−n

23 · c3(200)2C
n
p
n
p− n

p
+ c

n+2
2

23 · c3
n
(2Λ)2C

n
n+2
n

2

n+ 2
.

Letting r = p, we have from (4.48)

∂

∂t

∫
Mt

hp
σdμt ≤ c24p

p+n
p−n+n

∫
Mt

hp
σdμt.(4.49)

Now we apply the maximum principle and let σ → 0. Then for t ∈ [0,min{T ′, T ′
2}),

where T ′
2 = c−1

24 p
− 2n

p−n−n ln 3
2 , there holds

||Å(t)||p <
3

2
ε.
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Set T ′
0 = min{T ′

1, T
′
2}. As in Step 1 of the proof of Theorem 4.2, we can prove

that T ′ > T ′
0 by contradiction. In fact, from the smoothness of the mean curvature

flow we exclude the case where T ′ < Tmax. For the case where T ′ = Tmax, since we
have (4.48), which is similar in form to (4.16), we can apply the standard Moser
process to obtain the following estimate for small θ > 0:

hσ(x, t) ≤
(
1 +

2

n

)n(n+2)
4p

(
p+n
p−n+n

)
c

n
2p

25

(
c24p

p+n
p−n+n +

(n+ 2)2

2nt

)n+2
2p

×
(∫ Tmax−θ

0

∫
Mt

hp
σdμtdt

) 1
p

.(4.50)

Here c25 = Cn ·max{1, (2Λ)n+2T ′
0}.

Now we let σ → 0 and θ → 0. Then we have for t ∈ [Tmax

2 , Tmax),

|Å|2(x, t) ≤ C ′(n, p,Λ, ε, Tmax) < +∞.

This implies that

|A|2 ≤ a′|H|2 + b′

on [0, Tmax) for some positive constants a′ and b′ independent of t. On the other

hand, we also have
∫ Tmax

0

∫
Mt

|H|n+2dμtdt < +∞. Applying Theorem 3.4 we con-

clude that the mean curvature flow can be extended over time Tmax. This is a
contradiction.

We consider the mean curvature flow for t ∈ [
T ′
0

2 , T ′
0]. As in (4.50), we have

|Å|(x, t) ≤
(
1 +

2

n

)n(n+2)
4p

(
p+n
p−n+n

)
c

n
2p

25

(
c24p

p+n
p−n+n +

(n+ 2)2

nT ′
0

)n+2
2p

T
′ 1p
0 · 2ε

:= c26ε.(4.51)

By (4.37), we have

∂

∂t
w ≤ Δw + c20|Å|2w +

c20
n

|H|2w.

Then similarly as in (4.51), we get for t ∈ [
T ′
0

2 , T ′
0]

|H|2(x, t) ≤
(
1 +

2

n

)n(2n+1)
2

c
n

n+2

25

(
c27(n+ 2)2n+1 +

(n+ 2)2

nT ′
0

)
T

′ 2
n+2

0 · (2Λ)2

:= c29.(4.52)

Here

c27 = c20(200)
2C

n
p
n (2Λ)n +

c20
n

(2Λ)n+2C
n

n+2
n

+c
n+2
2

28 · c3(200)2C
n

n+2
n

2

n+ 2
+ c

n+2
2

28 · c20
n

(2Λ)2C
n

n+2
n

2

n+ 2
,

and

c28 =

(
c20(200)

2C
n

n+2
n · n

n+2 + c20
n (2Λ)2C

n
n+2
n

n
n+2

3n+ 2

) n
n+2

.

By (4.51) and (4.52), we have

|A|2(x, t) ≤ c226100
2 +

c29
n

:= c30
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for t ∈ [
T ′
0

2 , T ′
0]. As in Step 2 of the proof of Theorem 4.2, we have for t ∈ [0, Tmax)

that there hold

|H|2max(t) ≥ nnVol(Sn)V −1 := c31(4.53)

and

diam(Mt) ≤ c11(2Λ)
n−1V

3
n+2 := c32,(4.54)

where V = Vol(M0).

Using a similar argument, for t ∈ [
T ′
0

2 , T ′
3], where T ′

3 = min{T ′
0,

T ′
0

2 + 1
c17c30

}, we
have

|∇H|2 ≤ 3n2

2(n− 1)
·
(

c226(
t− T ′

0

2

) + c3c30c
2
26

)
ε2 := c233ε

2.(4.55)

Combining (4.53), (4.54) and (4.55), we obtain that, at time T ′
3, there is

ε′1 =
c31

2n
1
2 c30c32c33

,

such that if ε ≤ ε′1, then

|H|2min(T
′
3) ≥

c31
2

.(4.56)

Set

ε′2 =
c

1
2
31

[2n(n− 1)]
1
2 c27

for n ≥ 4, and ε′2 =
c

1
2
31

3
√
2c27

for n = 3.

By (4.51) and (4.56), we see that if ε ≤ min{ε′1, ε′2, 100}, then

|A|2(T ′
3) ≤ c227ε

2
2 +

1

n
|H|2(T ′

3) ≤
|H|2(T ′

3)

n− 1
for n ≥ 4,

and

|A|2(T ′
3) ≤

4

9
|H|2(T ′

3) for n = 3.

Then we can pick C2 = min{ε′1, ε′2, 100}, which depends only on n, p, V and Λ,
and this completes the proof of Theorem 4.4. �

Using a similar argument as in the proof of Corollary 4.3, we have the following.

Corollary 4.5. Let F0 : Mn → R
n+q (n ≥ 3) be a smooth closed submanifold.

Suppose that the mean curvature is nowhere vanishing. Then for any fixed p > n,
there is a positive constant C ′

2 depending on n, p, minM0
|H| and ||H||n+2, such

that if

||Å||p < C ′
2,

then the mean curvature flow with F0 as initial value has a unique solution F : M×
[0, T ) → R

n+q in a finite maximal time interval, and Ft(M) converges uniformly

to a point x ∈ R
n+q as t → T . The rescaled immersions F̃t =

Ft−x√
2n(T−t)

converge

in C∞-topology to a limiting embedding F̃T such that F̃T (M) is the unit n-sphere
in some (n+ 1)-dimensional subspace of Rn+q.

Now we give the proof of Theorem 1.3, which is restated as follows.
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Theorem 4.6. Let F0 : Mn → R
n+q (n ≥ 3) be a smooth closed submanifold.

Then there is a positive constant C3 depending on n,Vol(M) and ||A||n+2, such
that if

||A||n < n1/2[Vol(Sn)]1/n + C3,

then the mean curvature flow with F0 as initial value has a unique solution F : M×
[0, T ) → R

n+q in a finite maximal time interval, and Ft(M) converges uniformly

to a point x ∈ R
n+q as t → T . The rescaled immersions F̃t =

Ft−x√
2n(T−t)

converge

in C∞-topology to a limiting embedding F̃T such that F̃T (M) is the unit n-sphere
in some (n+ 1)-dimensional subspace of Rn+q.

Proof. The Chen-Willmore inequality says that for a closed submanifold Mn in the
Euclidean space, the total mean curvature satisfies∫

M

|H|ndμ ≥ nnVol(Sn).

On the other hand, we have∫
M

|A|ndμ =

∫
M

(
|Å|2 + |H|2

n

)n
2

dμ

≥
∫
M

|Å|ndμ+ n−n
2

∫
M

|H|ndμ.

Pick C3=
{[

C1(n, n, V, ||A||n+2)
]n

+n
n
2 Vol(Sn)

} 1
n −n

1
2 [Vol(Sn)]

1
n . Then if ||A||n<

n
1
2 [Vol(Sn)]

1
n + C3, we have ||Å||n < C1(n, n, V, ||A||n+2). By Theorem 4.2, Theo-

rem 4.6 follows. �

Put C ′
3 =

{[
C ′

1(n, n,maxM0
|H|, ||A||n+2)

]n
+ n

n
2 Vol(Sn)

} 1
n − n

1
2 [Vol(Sn)]

1
n ,

where C ′
1 = C ′

1(n, p,maxM0
|H|, ||A||n+2) is as in Corollary 4.3. We also have the

following corollary.

Corollary 4.7. Let F0 : Mn → R
n+q (n ≥ 3) be a smooth closed submanifold.

Suppose that the mean curvature is nowhere vanishing. Then there is a positive
constant C ′

3 depending on n,minM0
|H| and ||A||n+2, such that if

||A||n < n1/2[Vol(Sn)]1/n + C ′
3,

then the mean curvature flow with F0 as initial value has a unique solution F : M×
[0, T ) → R

n+q in a finite maximal time interval, and Ft(M) converges uniformly

to a point x ∈ R
n+q as t → T . The rescaled immersions F̃t =

Ft−x√
2n(T−t)

converge

in C∞-topology to a limiting embedding F̃T such that F̃T (M) is the unit n-sphere
in some (n+ 1)-dimensional subspace of Rn+q.

5. Open problems

In this section, we propose several open problems for the convergence of the
mean curvature flow of submanifolds. Denote by F

n+q(c) the (n + q)-dimensional
complete simply connected space form of constant sectional curvature c. Let M be
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an n-dimensional closed oriented submanifold in F
n+q(c) with c ≥ 0. Shiohama-

Xu [17] showed that if |A|2 < α(n, |H|, c), then M is homeomorphic to a sphere for
n ≥ 4 or diffeomorphic to a spherical space form for n = 3. Here

α(n, |H|, c) = nc+
n|H|2

2(n− 1)
− n− 2

2(n− 1)

√
|H|4 + 4(n− 1)c|H|2.

In [29], Xu-Zhao proved several differentiable sphere theorems for submanifolds
satisfying suitable pinching conditions in a Riemannian manifold. Recently, Xu-
Gu [26] strengthened Shiohama-Xu’s topological sphere theorem for c = 0 to be a
differentiable sphere theorem. Motivated by these sphere theorems and the conver-
gence theorem for the mean curvature flow due to Andrews-Baker [1], we propose
the following.

Open Problem 5.1. Let M be an n-dimensional (n ≥ 3) smooth closed submani-
fold in F

n+q(c) with c > 0. Let Mt be the solution of the mean curvature flow with
M as initial submanifold. Suppose M satisfies

|A|2 < α(n, |H|, c).

Then one of the following holds.
a) The mean curvature flow has a smooth solution Mt on a finite time interval

0 ≤ t < T and the Mt’s converge uniformly to a round point as t → T .
b) The mean curvature flow has a smooth solution Mt for all 0 ≤ t < ∞ and the

Mt’s converge in the C∞-topology to a smooth totally geodesic submanifold M∞
in F

n+q(c).
In particular, M is diffeomorphic to the standard n-sphere.

In [16], Shiohama-Xu obtained a topological sphere theorem for closed submani-

folds satisfying ||Å||n < C(n) in F
n+q(c) with c ≥ 0 for an explicit positive constant

C(n) depending only on n. The following problems arise out of this topological
sphere theorem and our convergence theorems.

Open Problem 5.2. Let M be an n-dimensional (n ≥ 2) smooth closed subman-
ifold in R

n+q. Let Mt be the solution of the mean curvature flow with M as initial
submanifold. Then there exists a positive constant D(n) depending only on n, such
that if M satisfies

||Å||n < D(n),

then the mean curvature flow has a solution Mt on a finite time interval [0, T ) and
Mt converges uniformly to a round point.

In particular, M is diffeomorphic to the standard n-sphere.

For any 4-dimensional compact manifold M which is homeomorphic to a sphere,
we hope to show that there exists an isometric embedding of the 4-sphere into a
Euclidean space such that ||Å||4 is small enough in the sense of Theorems 1.2 or
Open Problem 5.2. In fact, Shiohama-Xu [16] proved that for any 4-dimensional

closed submanifold M in a Euclidean space, we have ||Å||4 ≥ C(Σ3
i=1βi)

1/4, where
C is a universal positive constant and βi is the i-th Betti number of M , i =
1, 2, 3. Therefore it’s possible to isometrically embed a topological 4-sphere into
a Euclidean space with small upper bound for ||Å||4. If this can be done, then
we can deduce that M is diffeomorphic to a sphere. This may open a way to
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prove the smooth Poincaré conjecture in dimension 4, which is now one of the most
challenging problems in geometry and topology.

In general, for a homotopy sphere M , we can try to find its embedding in Eu-
clidean spaces with small integral norm ||Å||n. Our results on mean curvature flow
of arbitrary codimension reduce the problem of proving whether M is diffeomorphic
to a sphere to the problem of finding the optimal embeddings of M into Euclidean
spaces.

Open Problem 5.3. Let M be an n-dimensional (n ≥ 2) smooth closed submani-
fold in F

n+q(c) with c > 0. Let Mt be the solution of the mean curvature flow with
M as initial submanifold. Then there exists a positive constant E(n) depending
only on n, such that if M satisfies

||Å||n < E(n),

then one of the following holds.
a) The mean curvature flow has a smooth solution Mt on a finite time interval

0 ≤ t < T and the Mt’s converge uniformly to a round point as t → T .
b) The mean curvature flow has a smooth solution Mt for all 0 ≤ t < ∞, and the

Mt’s converge in the C∞-topology to a smooth totally geodesic submanifold M∞
in F

n+q(c).
In particular, M is diffeomorphic to the standard n-sphere.
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