Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Orbit full groups for locally compact groups


Authors: A. Carderi and F. Le Maître
Journal: Trans. Amer. Math. Soc. 370 (2018), 2321-2349
MSC (2010): Primary 37A15, 37A20; Secondary 22D10, 46L10
DOI: https://doi.org/10.1090/tran/6985
Published electronically: November 30, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the topological rank of an orbit full group generated by an ergodic, probability measure-preserving free action of a non-discrete unimodular locally compact Polish group is two. For this, we use the existence of a cross section and show that for a locally compact Polish group, the full group generated by any dense subgroup is dense in the orbit full group of the action of the group.

We prove that the orbit full group of a free action of a locally compact Polish group is extremely amenable if and only if the acting group is amenable, using the fact that the full group generates the von Neumann algebra of the action.


References [Enhancements On Off] (What's this?)

  • [ADR00] C. Anantharaman-Delaroche and J. Renault, Amenable groupoids, Monographies de L'Enseignement Mathématique [Monographs of L'Enseignement Mathématique], vol. 36, L'Enseignement Mathématique, Geneva, 2000. With a foreword by Georges Skandalis and Appendix B by E. Germain. MR 1799683
  • [AEG94] Scot Adams, George A. Elliott, and Thierry Giordano, Amenable actions of groups, Trans. Amer. Math. Soc. 344 (1994), no. 2, 803-822. MR 1250814, https://doi.org/10.2307/2154508
  • [Bec13] Howard Becker, Cocycles and continuity, Trans. Amer. Math. Soc. 365 (2013), no. 2, 671-719. MR 2995370, https://doi.org/10.1090/S0002-9947-2012-05570-X
  • [BK96] Howard Becker and Alexander S. Kechris, The descriptive set theory of Polish group actions, London Mathematical Society Lecture Note Series, vol. 232, Cambridge University Press, Cambridge, 1996. MR 1425877
  • [CFW81] A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynamical Systems 1 (1981), no. 4, 431-450 (1982). MR 662736
  • [CH75] Wojchiech Herer and Jens Peter Reus Christensen, On the existence of pathological submeasures and the construction of exotic topological groups, Math. Ann. 213 (1975), 203-210. MR 0412369, https://doi.org/10.1007/BF01350870
  • [CM16] Alessandro Carderi and François Le Maître, More Polish full groups, Topology Appl. 202 (2016), 80-105. MR 3464151, https://doi.org/10.1016/j.topol.2015.12.065
  • [Con76] A. Connes, Classification of injective factors. Cases $ II_{1},$ $ II_{\infty},$ $ III_{\lambda},$ $ \lambda\not=1$, Ann. of Math. (2) 104 (1976), no. 1, 73-115. MR 0454659, https://doi.org/10.2307/1971057
  • [Dan00] Alexandre I. Danilenko, Point realization of Boolean actions of countable inductive limits of locally compact groups, Mat. Fiz. Anal. Geom. 7 (2000), no. 1, 35-48 (English, with English, Russian and Ukrainian summaries). MR 1760945
  • [dlH79] P. de la Harpe, Moyennabilité du groupe unitaire et propriété $ P$ de Schwartz des algèbres de von Neumann, Algèbres d'opérateurs (Sém., Les Plans-sur-Bex, 1978) Lecture Notes in Math., vol. 725, Springer, Berlin, 1979, pp. 220-227 (French). MR 548116
  • [Dye59] H. A. Dye, On groups of measure preserving transformation. I, Amer. J. Math. 81 (1959), 119-159. MR 0131516, https://doi.org/10.2307/2372852
  • [FM77] Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289-324. MR 0578656, https://doi.org/10.2307/1997924
  • [For74] Peter Forrest, On the virtual groups defined by ergodic actions of $ R^{n}$ and $ {\bf Z}^{n}$, Advances in Math. 14 (1974), 271-308. MR 0417388, https://doi.org/10.1016/0001-8708(74)90033-4
  • [Fur99a] Alex Furman, Gromov's measure equivalence and rigidity of higher rank lattices, Ann. of Math. (2) 150 (1999), no. 3, 1059-1081. MR 1740986, https://doi.org/10.2307/121062
  • [Fur99b] Alex Furman, Orbit equivalence rigidity, Ann. of Math. (2) 150 (1999), no. 3, 1083-1108. MR 1740985, https://doi.org/10.2307/121063
  • [Gab00] Damien Gaboriau, Coût des relations d'équivalence et des groupes, Invent. Math. 139 (2000), no. 1, 41-98 (French, with English summary). MR 1728876, https://doi.org/10.1007/s002229900019
  • [Gab05] D. Gaboriau, Examples of groups that are measure equivalent to the free group, Ergodic Theory Dynam. Systems 25 (2005), no. 6, 1809-1827. MR 2183295, https://doi.org/10.1017/S0143385705000258
  • [Gao09] Su Gao, Invariant descriptive set theory, Pure and Applied Mathematics (Boca Raton), vol. 293, CRC Press, Boca Raton, FL, 2009. MR 2455198
  • [GM83] M. Gromov, V. D. Milman, and A topological application of the isoperimetric inequality, Amer. J. Math. 105 (1983), no. 4, 843-854. MR 708367, https://doi.org/10.2307/2374298
  • [GP02] Thierry Giordano and Vladimir Pestov, Some extremely amenable groups, C. R. Math. Acad. Sci. Paris 334 (2002), no. 4, 273-278 (English, with English and French summaries). MR 1891002, https://doi.org/10.1016/S1631-073X(02)02218-5
  • [GP07] Thierry Giordano and Vladimir Pestov, Some extremely amenable groups related to operator algebras and ergodic theory, J. Inst. Math. Jussieu 6 (2007), no. 2, 279-315. MR 2311665, https://doi.org/10.1017/S1474748006000090
  • [GTW05] E. Glasner, B. Tsirelson, and B. Weiss, The automorphism group of the Gaussian measure cannot act pointwise, Israel J. Math. 148 (2005), 305-329. Probability in mathematics. MR 2191233, https://doi.org/10.1007/BF02775441
  • [Hud93] Steven M. Hudson, A marriage theorem with Lebesgue measure, J. Combin. Theory Ser. A 62 (1993), no. 2, 234-251. MR 1207735, https://doi.org/10.1016/0097-3165(93)90046-B
  • [Kec95] Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597
  • [Kec10] Alexander S. Kechris, Global aspects of ergodic group actions, Mathematical Surveys and Monographs, vol. 160, American Mathematical Society, Providence, RI, 2010. MR 2583950
  • [KLM15] Adriane Kaïchouh and François Le Maître, Connected Polish groups with ample generics, Bull. Lond. Math. Soc. 47 (2015), no. 6, 996-1009. MR 3431579, https://doi.org/10.1112/blms/bdv078
  • [KPV15] David Kyed, Henrik Densing Petersen, and Stefaan Vaes, $ L^2$-Betti numbers of locally compact groups and their cross section equivalence relations, Trans. Amer. Math. Soc. 367 (2015), no. 7, 4917-4956. MR 3335405, https://doi.org/10.1090/S0002-9947-2015-06449-6
  • [LM14] François Le Maître, The number of topological generators for full groups of ergodic equivalence relations, Invent. Math. 198 (2014), no. 2, 261-268. MR 3274561, https://doi.org/10.1007/s00222-014-0503-6
  • [LM15] François Le Maître, On full groups of non-ergodic probability-measure-preserving equivalence relations, Ergodic Theory Dynam. Systems 36 (2016), no. 7, 2218-2245. MR 3568978, https://doi.org/10.1017/etds.2015.20
  • [Mac57] George W. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-165. MR 0089999, https://doi.org/10.2307/1992966
  • [Mac62] George W. Mackey, Point realizations of transformation groups, Illinois J. Math. 6 (1962), 327-335. MR 0143874
  • [MRV13] Niels Meesschaert, Sven Raum, and Stefaan Vaes, Stable orbit equivalence of Bernoulli actions of free groups and isomorphism of some of their factor actions, Expo. Math. 31 (2013), no. 3, 274-294. MR 3108102, https://doi.org/10.1016/j.exmath.2012.08.012
  • [OW87] Donald S. Ornstein and Benjamin Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math. 48 (1987), 1-141. MR 910005, https://doi.org/10.1007/BF02790325
  • [Pes06] Vladimir Pestov, Dynamics of infinite-dimensional groups, University Lecture Series, vol. 40, American Mathematical Society, Providence, RI, 2006. The Ramsey-Dvoretzky-Milman phenomenon; Revised edition of Dynamics of infinite-dimensional groups and Ramsey-type phenomena [Inst. Mat. Pura. Apl. (IMPA), Rio de Janeiro, 2005; MR2164572]. MR 2277969
  • [Pet13] Henrik Densing Petersen, $ L^2$-Betti numbers of locally compact groups, C. R. Math. Acad. Sci. Paris 351 (2013), no. 9-10, 339-342 (English, with English and French summaries). MR 3072156, https://doi.org/10.1016/j.crma.2013.05.013
  • [Pra81] V. S. Prasad, Generating dense subgroups of measure preserving transformations, Proc. Amer. Math. Soc. 83 (1981), no. 2, 286-288. MR 624915, https://doi.org/10.2307/2043512
  • [Pra83] V. S. Prasad, Sous-groupes libres et sous-ensembles indépendants de transformations préservant la mesure, Measure theory and its applications (Sherbrooke, Que., 1982) Lecture Notes in Math., vol. 1033, Springer, Berlin, 1983, pp. 276-282 (French). MR 729543, https://doi.org/10.1007/BFb0099865
  • [Var63] V. S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc. 109 (1963), 191-220. MR 0159923, https://doi.org/10.2307/1993903
  • [vD78] A. van Daele, Continuous crossed products and type $ {\rm III}$ von Neumann algebras, London Mathematical Society Lecture Note Series, vol. 31, Cambridge University Press, Cambridge-New York, 1978. MR 500089
  • [Zim84] Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 37A15, 37A20, 22D10, 46L10

Retrieve articles in all journals with MSC (2010): 37A15, 37A20, 22D10, 46L10


Additional Information

A. Carderi
Affiliation: Institut für Geometrie, Technische Universität Dresden, 01062 Dresden, Germany
Email: alessandro.carderi@gmail.com

F. Le Maître
Affiliation: Institut de Mathématiques de Jussieu-PRG, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris cedex 13, France
Email: francois.le-maitre@imj-prg.fr

DOI: https://doi.org/10.1090/tran/6985
Received by editor(s): January 31, 2016
Received by editor(s) in revised form: May 24, 2016
Published electronically: November 30, 2017
Additional Notes: The authors were partially supported by Projet ANR-14-CE25-0004 GAMME
The first author was partially supported by ERC Consolidator Grant No. 681207
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society