Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Compactifications of splitting models of PEL-type Shimura varieties


Author: Kai-Wen Lan
Journal: Trans. Amer. Math. Soc. 370 (2018), 2463-2515
MSC (2010): Primary 11G18; Secondary 11G15, 14D06
DOI: https://doi.org/10.1090/tran/7088
Published electronically: November 16, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct toroidal and minimal compactifications, with expected properties concerning stratifications and formal local structures, for all integral models of PEL-type Shimura varieties defined by taking normalizations over the splitting models considered by Pappas and Rapoport. (These include, in particular, all the normal flat splitting models they considered.)


References [Enhancements On Off] (What's this?)

  • [1] M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 23-58. MR 0268188
  • [2] Pierre Berthelot, Lawrence Breen, and William Messing, Théorie de Dieudonné cristalline. II, Lecture Notes in Mathematics, vol. 930, Springer-Verlag, Berlin, 1982 (French). MR 667344
  • [3] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822
  • [4] Pierre Deligne and Georgios Pappas, Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant, Compositio Math. 90 (1994), no. 1, 59-79 (French). MR 1266495
  • [5] Gerd Faltings and Ching-Li Chai, Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 22, Springer-Verlag, Berlin, 1990. With an appendix by David Mumford. MR 1083353
  • [6] Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli, Fundamental algebraic geometry: Grothendieck's FGA explained, Mathematical Surveys and Monographs, vol. 123, American Mathematical Society, Providence, RI, 2005. MR 2222646
  • [7] A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique, Publications mathématiques de l'I.H.E.S., vol. 4, 8, 11, 17, 20, 24, 28, 32, Institut des Hautes Etudes Scientifiques, Paris, 1960, 1961, 1961, 1963, 1964, 1965, 1966, 1967. MR 0217083, MR 0217084, MR 0217085, MR 0163911, MR 173675, MR 0199181, MR 0217086, MR 0238860.
  • [8] Monique Hakim, Topos annelés et schémas relatifs, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 64, Springer-Verlag, Berlin-New York, 1972 (French). MR 0364245
  • [9] Robin Hartshorne, Local cohomology, A seminar given by A. Grothendieck, Harvard University, Fall, vol. 1961, Springer-Verlag, Berlin-New York, 1967. MR 0224620
  • [10] Robert E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5 (1992), no. 2, 373-444. MR 1124982, https://doi.org/10.2307/2152772
  • [11] Kai-Wen Lan, Toroidal compactifications of PEL-type Kuga families, Algebra Number Theory 6 (2012), no. 5, 885-966. MR 2968629, https://doi.org/10.2140/ant.2012.6.885
  • [12] Kai-Wen Lan, Arithmetic compactifications of PEL-type Shimura varieties, London Mathematical Society Monographs Series, vol. 36, Princeton University Press, Princeton, NJ, 2013. MR 3186092
  • [13] Kai-Wen Lan, Compactifications of PEL-type Shimura varieties in ramified characteristics, Forum Math. Sigma 4 (2016), e1, 98. MR 3482277, https://doi.org/10.1017/fms.2015.31
  • [14] Kai-Wen Lan, Higher Koecher's principle, Math. Res. Lett. 23 (2016), no. 1, 163-199. MR 3512882, https://doi.org/10.4310/MRL.2016.v23.n1.a9
  • [15] Kai-Wen Lan, Integral models of toroidal compactifications with projective cone decompositions, Int. Math. Res. Not. IMRN (2017), no. 11, 3237-3280, DOI 10.1093/imrn/rnw123.
  • [16] B. Mazur and William Messing, Universal extensions and one dimensional crystalline cohomology, Lecture Notes in Mathematics, Vol. 370, Springer-Verlag, Berlin-New York, 1974. MR 0374150
  • [17] G. Pappas and M. Rapoport, Local models in the ramified case. II. Splitting models, Duke Math. J. 127 (2005), no. 2, 193-250. MR 2130412, https://doi.org/10.1215/S0012-7094-04-12721-6
  • [18] M. Rapoport, Compactifications de l'espace de modules de Hilbert-Blumenthal, Compositio Math. 36 (1978), no. 3, 255-335 (French). MR 515050
  • [19] M. Rapoport and Th. Zink, Period spaces for $ p$-divisible groups, Annals of Mathematics Studies, vol. 141, Princeton University Press, Princeton, NJ, 1996. MR 1393439
  • [20] Michel Raynaud, Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lecture Notes in Mathematics, Vol. 119, Springer-Verlag, Berlin-New York, 1970 (French). MR 0260758
  • [21] Davide A. Reduzzi and Liang Xiao, Partial Hasse invariants on splitting models of Hilbert modular varieties, Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), no. 3, 579-607 (English, with English and French summaries). MR 3665551
  • [22] S. Sasaki, Integral models of Hilbert modular varieties in the ramified case, deformations of modular Galois representations, and weight one forms, preprint.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11G18, 11G15, 14D06

Retrieve articles in all journals with MSC (2010): 11G18, 11G15, 14D06


Additional Information

Kai-Wen Lan
Affiliation: Department of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
Email: kwlan@math.umn.edu

DOI: https://doi.org/10.1090/tran/7088
Keywords: PEL-type Shimura varieties, degenerations and compactifications, integral models, local models and splitting models
Received by editor(s): August 6, 2015
Received by editor(s) in revised form: July 14, 2016
Published electronically: November 16, 2017
Additional Notes: The author was partially supported by the National Science Foundation under agreement No. DMS-1352216, and by an Alfred P. Sloan Research Fellowship
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society