
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 370, Number 4, April 2018, Pages 2657–2678
http://dx.doi.org/10.1090/tran/7098

Article electronically published on December 29, 2017

LOCAL GEOMETRY OF THE k-CURVE GRAPH

TARIK AOUGAB

Abstract. Let S be an orientable surface with negative Euler characteristic.
For k ∈ N, let Ck(S) denote the k-curve graph, whose vertices are isotopy
classes of essential simple closed curves on S and whose edges correspond
to pairs of curves that can be realized to intersect at most k times. The
theme of this paper is that the geometry of Teichmüller space and of the
mapping class group captures local combinatorial properties of Ck(S), for large
k. Using techniques for measuring distance in Teichmüller space, we obtain
upper bounds on the following three quantities for large k: the clique number of
Ck(S) (exponential in k, which improves on previous bounds of Juvan, Malnič,
and Mobar and Przytycki); the maximum size of the intersection, whenever it
is finite, of a pair of links in Ck (quasi-polynomial in k); and the diameter in
C0(S) of a large clique of Ck(S) (uniformly bounded). As an application, we
obtain quasi-polynomial upper bounds, depending only on the topology of S,
on the number of short simple closed geodesics on any unit-square tiled surface
homeomorphic to S.

1. Introduction

Let S be an orientable surface with genus g and with p punctures or marked
points. Define the complexity of S, denoted ω(S), to be equal to 3g + p− 4. Then
the curve graph of S, denoted C(S), is the graph whose vertices correspond to
isotopy classes of essential simple closed curves on S and such that there is an edge
between isotopy classes that can be realized disjointly on S. The curve graph has
deep connections to the geometry of Teichmüller space T (S) and to the mapping
class group Mod(S) ([2], [10], [15], [16], [24], [26]). Indeed, as a metric space it is
quasi-isometric to the electrified Teichmüller space, the space obtained from T (S)
equipped with the Teichmüller metric by coning off, for each simple closed curve α,
the region associated to those hyperbolic surfaces on which α is very short ([15]).
Moreover, the group of simplicial automorphisms of C(S) is isomorphic to Mod±(S)
([8], [11], [13]), the extended mapping class group.

In this paper, we consider for each k ∈ N, a variant of C(S) called the k-curve
graph, denoted Ck(S): vertices are the same as C(S), and edges correspond to pairs
of isotopy classes that can be realized with at most k intersections. The large scale
geometry of Ck(S) is well understood, because it is quasi-isometric to the standard
curve graph C(S) = C0(S). However, the local combinatorics of Ck(S) and how they
depend on k remain largely unexplored. The theme of this paper is that large scale
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geometric features of T (S) can be translated into local geometric features of Ck(S)
when k is large.

1.1. Cliques in Ck(S). As motivation, we recall the following question, first pop-
ularized by Farb and Leininger:

Question 1. As a function of ω(S), what is the largest size of a collection Ω of
pairwise non-homotopic, essential simple closed curves, such that no two curves in
Ω intersect more than once?

Question 1 is surprisingly challenging and remains open, although progress has
been made towards its resolution. Most recently, Przytycki has shown that any such
Ω has size bounded above by an explicit function that grows as a cubic polynomial
in ω(S) ([22]). On the other hand, it is not difficult to construct sequences of
such collections whose cardinalities grow quadratically in ω(S) ([1], [14]); the exact
growth rate remains an open problem. A natural generalization of Question 1 is
to ask, as a function of k ∈ N, for the largest size of a collection of (pairwise non-
homotopic) simple closed curves, pairwise intersecting at most k times. We call such
a collection of curves a k-system. Replacing Question 1 with this generalization, we
now consider a problem parametrized by two variables: ω(S) and k. That is, one
can fix k and ask for the size of the largest k-system as a function of complexity,
one can fix the surface S and vary k, or one can vary both simultaneously.

Przyticky’s bounds apply to this generalization, and in particular his result states
that the maximum size of a k-system on S grows at most as a polynomial in ω(S)
of degree k2 + k + 1. Juvan-Malnič-Mohar have also considered this question, and
when k is very large compared to ω(S), they show that such a collection has size
roughly at most kk ([9]). In this paper, we will focus on varying k while keeping S
fixed.

Question 1 can be reinterpreted as asking for the largest size of a clique—a
complete subgraph—in C1(S), and thus its generalization asks for the largest clique
size in Ck(S). The size of a largest clique in a graph is called the clique number of
the graph. Our first result provides, for a fixed surface S, an upper bound for the
clique number of Ck(S), which when k is large, outperforms the bounds from [22]
and from [9]:

Theorem 3.1. Fix a surface S with χ(S) < 0, and let NS(k) denote the clique
number of Ck(S). Then

log(NS(k)) ≺ k.

See subsection 2.1 below for the definition of ≺.
Thus, for a fixed surface S, NS(k) grows at most exponentially as a function of k.

In [1] we showed, for each g, the existence of a complete subgraph of Ck(Sg) whose

size was on the order of gk/2, where Sg is the closed surface of genus g. Combining
this with Theorem 3.1, it follows that NS(k) grows exponentially in k, with base

at least
√
ω(S).

1.2. Intersections of links in Ck(S). Given a simple closed curve α on S, the
k-link of α, denoted Lk(α), is the sphere of radius 1 in Ck(S), centered at the vertex
associated to α. Let α, β be a pair of simple closed curves on S in minimal position,
meaning that |α ∩ β| has been minimized over all possible choices of homotopic
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representatives for α or β. In this setting, we define |α ∩ β| to be the geometric
intersection number between α and β, and we write |α ∩ β| := i(α, β).

Then if α and β fill S, that is, if S\(α∪β) is a disjoint union of topological disks,
boundary parallel annuli, and once-punctured disks, then |Lk(α) ∩ Lk(β)| is finite,
for all k. On the other hand, if α and β do not fill, this intersection can be infinite.
Our next result states that for fixed k, |Lk(α) ∩ Lk(β)| is uniformly bounded over
all choices of filling pairs α, β, and furthermore that this bound grows at most
quasi-polynomially in k. A function f : N → N grows at most quasi-polynomially if
there exists some positive c, λ ≥ 1 so that

f(n) ≤ 2(λ·log(n))
c

.

When c = 1 the left-hand side is bounded above by a polynomial of degree 	λ
. We
show:

Theorem 4.1. There exists a function rS(k) depending only on the topology of S,
which grows at most quasi-polynomially and which satisfies the following. Let α, β
be simple closed curves on S which fill S, and let Lk(α) denote the set of all vertices
in Ck(S) that are distance 1 from α. Then |Lk(α) ∩ Lk(β)| ≤ rS(k).

We remark that our methods also prove Theorem 4.1 when α and β are allowed
to be multi-curves, multi-arcs, or a combination of pairwise disjoint arcs and curves:
there exists a uniform upper bound on the number of simple closed curves inter-
secting a filling multi-arc/curve pair at most k times, and this bound grows at most
quasi-polynomially in k.

In [1] we asked whether large k-systems project to small diameter subsets of the
curve graph C0(S). More concretely, a result of Hempel [5] (see also Lickorish [12])
implies that for any α, β simple closed curves with i(α, β) ≤ k,

dC0(S)(α, β) ≤ 2 log(k) + 2.

Thus, the diameter in C0(S) of any k-system is at most roughly log(k), and we ask
whether large k-systems can obtain this upper bound in diameter. Theorem 4.1
answers this in the negative; indeed, any large k-system projects to a diameter 2
subset of C0(S):

Corollary 4.2. Let Ω be a k-system on S with |Ω| = Nk(S). Then for all suffi-
ciently large k, Ω projects to a subset of the curve graph of diameter 2.

1.3. Unit-square tiled surfaces. Assume S is a closed surface. Another appli-
cation of Theorem 4.1 is to bound the number of short simple closed curves on
square-tiled surfaces homeomorphic to S. A unit-square tiled surface is a metric
surface S obtained by gluing together finitely many copies of the unit square in C

(see Section 4 for precise definitions). Such a surface admits a flat metric structure
away from finitely many singularities, which occur at vertices around which more
than four squares have been glued; the area of this metric is equal to the number
of squares.

If S is a unit-square tiled surface, let NS(L) denote the number of homotopy
classes of simple closed curves admitting a representative on S with length at most
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L. Finally, let X (S) denote the set of all unit-square tiled surfaces whose underlying
topology is that of S. We show:

Corollary 4.3. For S a closed surface, there exists a function PS which grows at
most quasi-polynomially, such that

sup {NS(L) : S ∈ X (S)} ≤ PS(L).

1.4. The use of Teichmüller geometry. As our main results are largely combi-
natorial, a natural question is to ask whether or not there exist purely combinatorial
proofs. The author is unaware of such arguments or of any argument proving the
main results that completely circumvent the use of Teichmüller geometry. The
existence of such a combinatorial argument would be of independent interest and
would follow a recurring theme in this research area: the first proof of an inherently
combinatorial result relies heavily on Teichmüller theory, and much later a purely
combinatorial argument is discovered. This is perhaps reflective of the fact that
many of the most powerful and well-known tools for studying the combinatorics of
C(S) and of Mod(S) reference Teichmüller geometry. For example,

(1) the original proof of the hyperbolicity of the complex of curves due
to Masur-Minsky [15] and of the hyperbolicity of the arc graph by
Masur-Schleimer [17] were reproved in a combinatorial fashion by Hensel-
Przytycki-Webb [7];

(2) Choi-Rafi proved a purely combinatorial inequality (included below as (3.2))
relating subsurface projections to geometric intersection numbers using Te-
ichmüller geometry, and this was recently reproved using only combinatorial
methods by Watanabe [28].

While combinatorial proofs usually exist, Teichmüller geometry seems to capture
well the intersection patterns of curves on surfaces, often in ways that make par-
ticularly efficient and concise arguments possible.

1.5. Organization. In section 2, we cover the necessary preliminaries. The mate-
rial covered in this section is completely standard and well-known to experts, with
the possible exception of subsection 2.5, in which we impose several conventions
and prove a basic lemma that will simplify the proof of Theorem 3.1. In section 3,
we prove Theorem 3.1. In section 4, we prove Theorem 4.1 and Corollary 4.3.

2. Preliminaries

2.1. Notation and Coarseness. Given two quantities (or functions) f, g, by
f �C g we mean

(2.1)
1

C
f − C ≤ g ≤ C · f + C.

In this paper, unless otherwise stated, the constant C in relations as above will
depend only on the topology of the underlying surface S. When the explicit constant
C is not of interest, we will suppress it by using the notation f � g, meaning there
exists some constant C such that f �C g.

By f ≺ g (respectively f � g), we mean that there exists a constant C such that
the right-hand (resp. left-hand) inequality of (2.1) holds. We say f is coarsely less
than or coarsely at most g to mean f ≺ g, and that f and g are coarsely equal if
f � g.
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By f ≺+ g or f �+ g, we mean that there exists some C so that

f ≤ g + C

or

f − C ≤ g ≤ f + C,

respectively.
Given metric spaces X,Y , and a map f : X → 2Y from X to the power set of Y ,

we say that f is a coarsely well-defined map from X to Y if there exists a constant
K ≥ 0 so that for any x ∈ X,

diamY (f(x)) < K.

Finally, we remark here that all logarithms in this paper will be base 2.

2.2. Curves and arcs. A simple closed curve on a surface S is the image of
an embedding φ : S1 → S. All homotopies between pairs of curves or arcs are
not required to fix boundary components pointwise. A curve is essential if it is
not homotopically trivial and not homotopic into a neighborhood of a puncture
or parallel to a boundary component. A simple arc on S is a proper embedding
of either a closed interval [0, 1]—and in this case the endpoints are mapped to
boundary components—or an open interval. A simple arc is essential if it cannot
be homotoped to lie within a neighborhood of a puncture or boundary component.

A multi-curve (or multi-arc) is a disjoint union of simple closed curves (respec-
tively arcs).

Given two homotopy classes of curves or arcs α, β, their geometric intersection
number, denoted i(α, β), is defined as

i(α, β) = min
x∼α,y∼β

|x ∩ y|,

where∼ denotes homotopy. If curves α, β achieve the geometric intersection number
associated to the corresponding pair of homotopy classes, we say they are inminimal
position. A pair of simple closed curves α, β are in minimal position if and only
if no connected component of S \ (α ∪ β) is a bigon, which is a simply connected
region bounded by one arc of α and one of β (see section 1.2.4 of [4]).

A curve system is a collection of pairwise non-homotopic, pairwise in minimal
position essential simple closed curves on S, and a curve and arc system is defined
analogously. If Λ,Γ are two curve systems, we say Λ is homotopic to Γ as curve
collections if there is a bijection from Λ to Γ such that the image of each curve in
Λ is homotopic to it. Then we define the geometric intersection number i(Γ,Γ′) by

i(Γ,Γ′) =
∑

γ∈Γ,γ′∈Γ′

i(γ, γ′).

A curve and arc system {α1, . . . , αn} in pairwise minimal position is said to fill
S if S \

⋃
i αi is a disjoint union of topological disks, once-punctured disks, and

boundary parallel annuli. Alternatively, the system fills if and only if any essential
simple closed curve γ has positive geometric intersection number with at least one
element of the system.
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2.3. The mapping class group and the curve graph. Themapping class group
of S, denoted Mod(S), is the group of orientation preserving homeomorphisms
of S fixing the boundary pointwise, up to isotopy. The extended mapping class
group, denoted Mod±(S), is the group of all isotopy classes of homeomorphisms
(orientation preserving or reversing) of S fixing the boundary pointwise. In all
that follows, suppose that we have equipped the surface S with a fixed complete
hyperbolic metric ρ whenever S admits such a metric.

If ω(S) > 0, then the curve graph of S, denoted C(S), is the graph whose
vertices correspond to isotopy classes of essential simple closed geodesics on S, and
two vertices span an edge exactly when the corresponding geodesics are disjoint
on S. If S is a torus with 0 or 1 punctures, then vertices of C(S) are isotopy
classes of essential simple closed curves, and adjacency corresponds to simple closed
curves intersecting once. If S is the 4-holed sphere, then adjacency corresponds to
geodesics which intersect twice.

Finally, if S is an annulus, then S equipped with ρ can be identified with the
quotient of the hyperbolic plane by the action of an infinite cyclic subgroup Γ of
PSL(2,R) generated by a hyperbolic matrix. Thus S admits a compactification S̄
compatible with the hyperbolic structure on S, obtained by adding in the domain
of discontinuity for the action of Γ. Then vertices of C(S) correspond to geodesic
simple arcs on S̄ running from one boundary component to the other, and adjacency
corresponds to disjointness. If α is the core curve of the annulus, we will sometimes
refer to C(S) as C(α).

The curve graph of any surface is made into a metric space by identifying each
edge with [0, 1]. Let dS(, ) denote distance in C(S). The curve graph admits an
isometric (but not properly discontinuous) action of Mod±(S).

If ω(S) > 0 or if S is a punctured torus or 4-holed sphere, define AC(S), the
arc and curve graph of S, to be the graph whose vertices correspond to isotopy
classes of essential simple closed geodesics and geodesic arcs on S. As with C(S),
two vertices are connected by an edge if and only if the corresponding geodesics
can be realized disjointly. If S is an annulus, set AC(S) := C(S).

By a simple surgery argument, when S is not an annulus, distance in C(S) is
bounded above by a logarithmic function of intersection number ([5], [12]); given
any two simple closed curves α, β,

(2.2) dS(α, β) ≤ 2 log(i(α, β)) + 2.

When S is an annulus, C(S) is quasi-isometric to Z, and distance is coarsely
measured by intersection number ([16]).

2.4. Subsurface projections. A non-annular subsurface Y of S is the closure of
a complementary component of an essential multi-curve on S which is not homeo-
morphic to a sphere with the sum of boundary components and punctures at most
3. An annular subsurface Y ⊆ S is a closed neighborhood of an essential simple
closed curve on S, homeomorphic to [0, 1]× S1.

Let Y ⊆ S be a subsurface of S, where ω(S) > 0; as in the previous subsection,
S has been equipped with a complete hyperbolic metric ρ. Then there is a covering
space SY , which is a non-compact hyperbolic surface after we lift ρ to SY , associated
to the inclusion π1(Y ) < π1(S). We can then compactify SY as above, obtaining a

compact surface SY by adding the domain of discontinuity for the action of π1(Y ),

and we note that SY is homeomorphic to Y . Via this homeomorphism, we identify
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AC(Y ) with AC
(
SY

)
. Then, given α ∈ AC0(S), we obtain a coarsely well-defined

map πY : AC(S) → AC(Y ) defined by setting πY (α) equal to the essential curves
and arcs in its preimage under the covering map SY → S.

When Y is not an annulus, given an arc a ∈ AC(Y ), there is a closely related
simple closed curve τ (a) ∈ C(Y ) obtained from a by surgering along the boundary
components that a meets. More concretely, let N (a) denote a regular neighborhood
of the union of a together with the (at most two) boundary components of Y that
a meets, and define τY (a) ∈ 2C(S) to be the essential components of ∂(N(a)); this
is non-empty because a is not boundary parallel and it is in minimal position with
∂Y since it is a geodesic arc in the metric ρ. On the other hand, if Y is an annulus,
define τY to be the identity map.

Thus we obtain a subsurface projection

ψY := τ ◦ πY : C(S) → C(Y )

for Y ⊆ S any essential subsurface. In practice, to obtain ψY (α), consider the
intersection of α with Y . If α is contained completely within Y and Y is not
an annulus, we define ψY (α) = α; if α ∩ Y = ∅, then the projection ψY (α) is
undefined. Finally, if α ∩ Y consists of a collection of arcs, define ψY (α) to be the
curves obtained by surgering those arcs via the process described in the previous
paragraph. Note also that if A is an annulus and c is its core curve, the projection
ψA(c) is not defined. We will sometimes refer to ψA as ψα where α is the core curve
of A.

Given α, β ∈ C(S), define dY (α, β) by

dY (α, β) := diamC(Y )(ψY (α) ∪ ψY (β)).

We note that ψY is coarsely Lipschitz (see Lemma 2.3 of [16]):

dY (α, β) ≤ 2 · dS(α, β) + 2,

and furthermore, for any δ a component of ψY (α) and η a component of ψY (β),

(2.3) i(η, δ) ≤ 4 · i(α, β) + 4.

Equation (2.3) follows from the fact that ψY (α) traverses α∩Y at most twice, one
in each direction; the extra 4 intersections account for the portion of ψY (α) that
traverses part of ∂Y . See also Figure 7 of [16].

2.5. The marking graph and the Masur-Minsky distance formula. In [16],
Masur-Minsky construct a locally finite connected graph, the marking graph M(S)
of a surface S, which they prove is quasi-isometric to a Cayley graph for the mapping
class group Mod(S) with respect to any finite generating set. The vertices of M(S)
are so-called complete clean markings, which are certain curve systems that fill S,
and edges correspond to elementary moves between such markings. As we will
not need precise definitions of these terms here, we refer the reader to [16] for
background on the marking graph.

Given k ∈ N, a k-marking is a graph μ that fills S (i.e., each complementary
region of μ is simply connected or once-punctured) and such that μ has at most k
edges. Define the intersection between two graphs iG(Γ1,Γ2) to be the minimum of
|Γ′

1∩Γ′
2|, where Γ′

i is isotopic to Γi (via an isotopy that is not required to fix vertices
pointwise), and so that Γ′

1,Γ
′
2 share no vertices in common and all intersections are

transverse.



2664 TARIK AOUGAB

A marking μ, and in fact any curve system in pairwise minimal position, can be
reinterpreted as a graph on the surface S by defining the vertices to be intersections
between curves in the system, and edges to be arcs of the curves running between
intersection points. Choosing different isotopy representatives of the curves in the
system will a priori result in different isomorphism types of graphs. We address this
ambiguity by choosing once and for all a hyperbolic metric ρ and considering and
interpreting each curve system Γ as a graph by considering the union of all geodesic
representatives of the curves in Γ, after perhaps a slight modification described as
follows. It will be useful to assume that Γ, when interpreted as a graph, has no
triple points, meaning that each vertex is 4-valent. Thus, for any curve system
having the property that three of its elements have geodesic representatives on ρ
which all meet in the same point, we slightly homotope one of these three curves
to move it off the common intersection point. There is ambiguity in how to choose
this homotopy, but for each curve system we make these choices as necessary and
fix them once and for all.

The next lemma establishes that graph intersection number and geometric in-
tersection number of curve systems are comparable:

Lemma 2.1. If Λ = {α1, . . . , αn} ,Γ = {β1, . . . , βm} are two curve systems, then

i(Γ,Λ) ≤ iG(Γ,Λ) ≤ max(n,m) · i(Γ,Λ).

Proof. That i(Γ,Λ) ≤ iG(Γ,Λ) follows from the fact that every isotopy of Γ as a
graph can be re-interpreted as an isotopy of each individual curve in Γ.

For the other inequality, consider the hyperbolic metric ρ on S described above,
and realize the elements of Λ and of Γ by geodesics; let Γρ,Λρ denote these geodesics,
each interpreted as a graph with geodesic edges. By slightly homotoping the ge-
odesic representatives so that they are not geodesic but are very nearly geodesic,
we can assume that there are no triple points in Λρ ∪ Γρ. This homotopy can
be performed without altering the isotopy class of either graph. Then i(Γ,Λ) will
be equal to the set-theoretic intersection number |Γρ ∩ Λρ|, which is also at least
iG(Γ,Λ) so long as Λ and Γ share no curves in common. Indeed, the computation
of iG requires that we choose representatives of each graph that share no edges
in common; thus for each curve c that Λ and Γ share, we must alter either Γρ

or Λρ slightly by adding a parallel, nearly geodesic copy of c. This has the effect
of doubling each intersection between c and curves in either Γ or Λ, and one has
i(c,Γ), i(c,Λ) ≤ i(Γ,Λ). �

Now, define

j1 = max
μ,μ′

|μ| · i(μ, μ′),

where the maximum is taken over all pairs of complete clean markings μ, μ′ con-
nected by an edge in M(S); note that this maximum is well-defined since the
cardinality of any complete clean marking is a constant depending only on the
topology of S, and there are only finitely many edges in M(S) up to the action of
Mod(S), and this action preserves geometric intersection number. Let B1 be an
upper bound on the number of edges in any complete clean marking μ, interpreted
as a graph on S, and let B := max(B1, 4|χ(S)|). Finally, let

j2 = max
Γ

min
μ

iG(Γ, μ),
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where the maximum is taken over all graphs Γ that fill S with at most B edges (and
there are finitely many such graphs up to the action of Mod(S)), and the minimum
is taken over all complete clean markings μ.

Then for j = max(j1, j2), consider the graph Mj,B(S), whose vertices are isotopy
classes of B-markings and whose edges correspond to pairs (Γ,Γ′) with iG(Γ,Γ′) ≤
j. The graph Mj,B(S) is connected by choice of j, B and by the connectedness
of M(S), and the map ι : M(S) → Mj,B(S) sending a complete clean marking
to itself (interpreted as a B-marking) is a Mod(S)-equivariant quasi-isometry. We
note that a very similar construction of Mj,B(S) appears in [29]. We also remark
that choosing B ≥ 4|χ(S)| has not been used yet; to obtain a connected graph that
is quasi-isometric to Mod(S), it suffices to choose B := B1. However our choice of
B will be used at the end of the proof of Theorem 3.1.

We can extend the subsurface projection operation to B-markings as follows.
Given a subsurface Y , suppose that Γ is a B-marking which is also a curve system
{α1, . . . , αn}, and let j be such that αj intersects Y . Since Γ must fill S, there
always exists such a j. Then we can define ψY (Γ) := ψY (αj). Since i(αj , αk) ≤ B
for each k, inequality (2.2) implies that the diameter of Γ in the curve complex
of S is uniformly bounded, and thus by the fact that ψY is coarsely Lipschitz, it
follows that dY (ψY (αj), ψY (αk)) is bounded solely in terms of B. Thus coarsely,
the computation of distance between projections of curve systems does not depend
on which curve in each system we choose to define each projection.

Next, if Γ is an arbitrary B-marking, by construction of Mj,B(S), it is distance
1 from at least one graph Λ in Mj,B(S), so that Λ is a curve system (in fact a
complete clean marking). In this case we define ψY (Γ) := ψY (Λ). Again, using
inequality (2.2) and the fact that subsurface projection is coarse Lipschitz, the
distances between projections of B-markings will be coarsely independent of which
curve system we choose when defining projections.

The following formula, due to Masur and Minsky, allows for the computation of
distance in M(S) via subsurface projections ([16]):

Theorem 2.2. There exists D = D(S) such that for any T > D, the following
holds. There exists N such that for any μ1, μ2 complete clean markings,

dM(μ1, μ2) �N

∑
Y⊆S

[[dY (μ1, μ2)]]T ,

where [[x]]T = x for x ≥ T and 0 otherwise.

Our definitions of subsurface projections for B-markings have been set up so that
the inclusion map ι : M(S) ↪→ Mj,B(S) being a Mod(S)-equivariant quasi-isometry
implies that Theorem 2.2 applies as written to Mj,B(S).

2.6. Hierarchy paths. As part of the proof of Theorem 2.2, given complete, clean
markings μ, μ′ Masur and Minsky construct certain paths in M(S), called hierarchy
paths, from μ to μ′ ([16]). A hierarchy path H from μ to μ′ can be identified with a
collection CH of geodesics defined in curve graphs of various essential subsurfaces
of S. Given a geodesic h ∈ CH , let D(h) ⊆ S denote the subsurface on which h
is defined. There exists a certain relation ↘d (direct forward subordinacy) on the
geodesics in CH whose transitive closure generates a partial order on CH (denoted
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↘ and called forward subordinacy). We will not need the details of this identifica-
tion, nor the exact definition of forward subordinacy, and therefore we only record
some important properties below:

(1) Exactly one of the geodesics in CH , called the main geodesic, lives in C(S),
and thus every other one is a geodesic in the curve graph of some proper
subsurface. Furthermore, the length of the hierarchy path is equal to the
sum of the lengths over all geodesics in CH (condition 1 of Definition 4.4
of [16]).

(2) There exists J = J(S) such that if g is a geodesic in CH supported on some
subsurface Y ⊆ S, then the length of g, which we denote by |g|, is within
J of dY (μ, μ

′). Moreover, if dY (μ, μ
′) > J , then there exists a geodesic h

in the hierarchy with D(h) = Y (Lemma 6.2 of [16]).
(3) If h ↘d g, then |χ(D(h))| < |χ(D(g))|. Furthermore, given g ∈ CH , the

number of geodesics h satisfying h ↘d g is at most |g|+ 4 (equation (9.19)
of [18]).

(4) Let m ∈ CH denote the main geodesic. Then for any h ∈ CH , h �= m, we
have h ↘ m (condition 3 of Definition 4.4 of [16]).

2.7. Teichmüller space and Rafi’s formula. For this section, we assume S has
no boundary (but perhaps punctures). The Teichmüller space of S, denoted T (S),
is the space of marked Riemann surfaces homeomorphic to S. Concretely, T (S), as
a set, is the collection of pairs (φ, σ) modulo a certain equivalence relation, where
σ is a finite area complete hyperbolic surface homeomorphic to S and φ : S → σ is
a homeomorphism. The equivalence relation is defined as follows: (φ, σ) ∼ (φ′, σ′)
exactly when there exists an isometry j : σ → σ′ such that j ◦ φ is homotopic to
φ′. Given x = (φ, σ) ∈ T (S), φ is called the marking, or marking homeomorphism,
of x.

We will assume that T (S) is equipped with the metric topology coming from
the Teichmüller metric, denoted by dT (·, ·). In this metric, the distance between
two marked Riemann surfaces x = (φ1, σ1) and y = (φ2, σ2) is determined by the
logarithm of the minimal dilatation associated to a quasiconformal map Φ : x → y
such that Φ ◦ φ1 is isotopic to φ2. T (S) is homeomorphic to R

6g−6+2p, where g is
the genus of S and p is the number of punctures [3].

Fix ε > 0. The ε-thick part of T (S), denoted Tε, is the set of all points in T (S)
whose underlying hyperbolic metric has injectivity radius at least ε; equivalently, it
is the set of all marked hyperbolic surfaces on which every essential simple closed
curve has length at least 2ε. Let x, y ∈ Tε, and let μx, μy be the shortest complete
clean markings on x, y respectively. Then the following formula due to Rafi relates
the Teichmüller distance dT (x, y) to subsurface projections ([24]):

Theorem 2.3. For x, y ∈ Tε, there exists P > 1 such that

dT (x, y) �
∑
Y⊆S

[[dY (μx, μy)]]P +
∑
A⊂S

log([[dA(μx, μy)]]P ),

where the first sum is over all non-annular essential subsurfaces Y , and the second
is over all essential annuli. Moreover, we define log([[w]]P ) to be equal to 0 if
w < P , and to be log(w) otherwise.
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We will also have use for the following coarse equality due to Choi-Rafi, which
relates distance in the ε-thick part of Teichmüller space to the logarithm of inter-
section number ([23]):

(2.4) log(i(μx, μy)) �+ dT (x, y).

In equation (2.4), the additive constant depends on both the surface S and the
thickness constant ε. Thus, when we use this equation, we will fix an ε > 0 once
and for all which depends only on the surface S, thereby converting (2.4) into an
equation depending only on S.

3. Bounds on K-systems

In this section, we prove Theorem 3.1:

Theorem 3.1. Fix a surface S with χ(S) < 0, and let NS(k) denote the clique
number of Ck(S). Then

log(NS(k)) ≺ k.

Let Γ be any curve system representing a clique in Ck(S). The strategy of the
proof will be to produce a constant W (depending only on S and not on k) and a
map Φ : Γ → Mj,B(S) such that (1) the pre-image of any point has cardinality at
most W and (2) such that the image Φ(Γ) is contained in a ball of radius coarsely
at most k in Mj,B(S). Since Mj,B(S) is a locally finite graph with valence bounded
solely in terms of the topology of the surface S, the number of vertices in a ball
of radius R in Mj,B(S) grows at most exponentially in R, and thus the theorem
follows.

Proof. We first note that it suffices to assume that Γ fills S, for if not, we can
decompose S into a disjoint union of subsurfaces S1, S2, . . . such that each γ is
contained in one Si and such that each Si is filled by the subset Γi of Γ it contains.
The number of such subsurfaces is bounded above solely in terms of the topology
of S, and therefore the desired bound on |Γ| in Theorem 3.1 follows by a bound on
each Γi. Thus we assume that Γ has one connected component. �

We first show that distance in Mj,B(S) is coarsely bounded above by intersection
number:

Lemma 3.2. Given μ1, μ2 ∈ Mj,B(S),

dMj,B(S)(μ1, μ2) ≺ iG(μ1, μ2).

Remark 3.3. We note that Lemma 3.2 is sharp: suppose μ1 is a curve system and
μ2 is obtained from μ1 by applying k � j Dehn twists about one of the curves in
μ1. Then both dMj,B

(μ1, μ2) and iG(μ1, μ2) will be coarsely equal to k.

Remark 3.4. The proof of Lemma 3.2 factors through Teichmüller distance, and
in particular Theorem 2.3. However all that is actually used is equation (3.2),
which is a purely combinatorial statement (we thank the referee for making this
observation). In the spirit of subsection 1.4, this motivates the search for an even
more combinatorial proof of the lemma. For instance, when S is punctured we
sketch an alternative, more combinatorial argument for Lemma 3.2:

The flip graph F(S) is the graph whose vertices consist of (isotopy classes of)
ideal triangulations of S (thus F(S) is non-empty if and only if S has at least one
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puncture) and whose edges correspond to diagonal swaps : one triangulation is ob-
tained from the other by deleting a diagonal of one quadrilateral in the triangulation
and replacing it with the other diagonal.

Mosher [20] and independently Penner [21] proved that dF(S)(τ1, τ2) ≤ i(τ1, τ2),
and this suggests an alternative and perhaps more combinatorial proof of Lemma
3.2 in the punctured setting: since the mapping class group acts properly and
cocompactly on F(S), it is quasi-isometric to Mj,B(S), and Lemma 3.2 would
follow by exhibiting an explicit quasi-isometry that coarsely preserves intersection
number. A natural candidate for such a quasi-isometry is described as follows: given
a triangulation τ , consider the marking obtained by taking a regular neighborhood
of each arc of τ . Any two of the resulting curves can intersect at most 4 times
(twice for each end point of the arcs), and thus we obtain a B-marking. Moreover,
each intersection between a pair of arcs contributes at most 4 intersections between
resulting curves, and therefore

(3.1) iG(θ(τ1), θ(τ2)) ≺ i(τ1, τ2),

as desired. We thank the referee for suggesting this quasi-isometry.

Proof of Lemma 3.2. To prove Lemma 3.2 we use the following inequality, which
follows from Rafi’s distance formula and from (2.4) (see Corollary D of [23]): there
exists some constant P = P (S) such that

(3.2) log(iG(μ1, μ2)) �
∑
Y⊆S

[[dY (μ1, μ2)]]P +
∑
A⊂S

log([[dA(μ1, μ2)]]P ),

where the first sum is over all non-annular essential subsurfaces of Y , and the
second is taken over all essential annuli. We remark that in [23] this formula is
proven for μ1, μ2 complete clean markings; however by Lemma 2.1 and the way we
have defined subsurface projection for B-markings, (3.2) holds for B-markings as
well.

We also recall the Masur-Minsky distance formula ([16]), which asserts the exis-
tence of a constant T = T (S) such that

(3.3) dMj,B(S)(μ1, μ2) �
∑
Y⊆S

[[dY (μ1, μ2)]]T ,

where the sum is taken over all essential subsurfaces of S, including annuli. We
first note that it suffices to assume that the threshold P in (3.2) is equal to the
threshold T in (3.3). Indeed, assume first that P < T . However we are free to raise
the threshold P until it equals T , as we will only be using the direction of (3.2)
which bounds log(iG(μ1, μ2)) from below, and raising the threshold will only make
the right-hand side of (3.2) smaller. Thus it suffices to assume that T ≤ P . On
the other hand, if T < P , we can also raise T so that it coincides with P . This
follows from the fact that the Masur-Minsky distance formula (3.3) holds for all
sufficiently large thresholds (however different thresholds require different coarse
equality constants). Thus henceforth, we can assume that P = T .

Moreover, we can set the threshold T to be larger than the constant J from
property (2) of hierarchies listed in subsection 2.6; that is, any such subsurface
with dY (μ1, μ2) > J must appear in any hierarchy from μ1 to μ2.
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Define R1, R2 by

(3.4) R1 :=
∑

Y⊆S,non-annular

[[dY (μ1, μ2)]]T ;R2 :=
∑

A⊂S,A annular

[[dA(μ1, μ2)]]T .

Then the sum on the right-hand side of the Masur-Minsky distance formula (3.3)
is simply R1 +R2. Then since P = T , (3.2) implies that

(3.5) log(iG(μ1, μ2)) � R1.

Thus, applying (3.3), we have reduced Lemma 3.2 to proving that

(3.6) iG(μ1, μ2) � R2.

To this end, we first claim that R2 has coarsely at most log(iG(μ1, μ2)) sum-
mands. To see this, note that by property (2) of hierarchies, any annulus A for
which dA(μ1, μ2) > T will appear in a hierarchy path from μ1 to μ2. Thus, each
such annulus must be directly forward subordinate to one of the non-annular sub-
surfaces in the hierarchy, and for any non-annular subsurface Y in the hierarchy,
there are at most |gY | + 4 subsurfaces which are directly forward subordinate to
Y , where |gY | is the length of the geodesic gY supported on Y . It follows that the
number of annuli appearing in the hierarchy is coarsely at most the length of the
hierarchy coming from geodesics supported on non-annular subsurfaces, which is
coarsely at most R1. Hence the desired bound follows from (3.5).

We next claim that there exists a constant L depending only on S, such that
there exists at most L essential annuli A ⊂ S satisfying

(3.7) dA(μ1, μ2) > iG(μ1, μ2)/ log(i
G(μ1, μ2)).

Assuming (3.7) and using the fact that dA(μ1, μ2) ≺ iG(μ1, μ2) for any annulus
(this follows from (2.3) and the fact that distance in an annular complex is coarsely
at most the intersection number), we have the bound

R2 ≺ L · iG(μ1, μ2) + log(iG(μ1, μ2))

[
iG(μ1, μ2)

log(iG(μ1, μ2))

]

= (L+ 1)iG(μ1, μ2),

which implies the conclusion of Lemma 3.2. Therefore it remains to prove the
existence of such an L; assume by way of contradiction that no such L exists. Then
there exists a sequence of pairs of B-markings

(μ
(j)
1 , μ

(j)
2 )∞j=1

satisfying the property that if S(j) denotes the number of annuli onto which the

projection of the pair μ
(j)
1 , μ

(j)
2 has distance at least

iG(μ
(j)
1 , μ

(j)
2 )/ log(iG(μ

(j)
1 , μ

(j)
2 )),

then S(j) → ∞.
Henceforth, let i(j) denote the intersection iG(μ

(j)
1 , μ

(j)
2 ); note that i(j) → ∞.

Indeed, the assumption that S(j) → ∞ and (3.3) implies that the distance

dMj,B(S)(μ
(j)
1 , μ

(j)
2 ) → ∞,

and given any finite C > 0, there are only finitely many pairs of B-markings, up
to the action of Mod(S) (which acts isometrically on Mj,B(S) and which preserves
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intersection number) which intersect each other at most C times. Then (3.2) implies
that for each j,

(3.8) log(i(j)) �
∑

A⊂S,annular

log[[dA(μ
(j)
1 , μ

(j)
2 )]]T =: R

(j)
2 ,

where the multiplicative and additive constants in the coarse equality depend only
on S and not on j. Exponentiating both sides of this inequality, we obtain

(3.9) i(j) > 2−Q
∏
A⊂S

([[dA(μ
(j)
1 , μ

(j)
2 )]]T )

1/Q,

for some Q > 0 depending only on S. However, since there are S(j) summands of

R
(j)
2 whose size is at least i(j)/ log(i(j)) (and since each summand is at least 1), it

follows that the product on the right-hand side of (3.9) is at least on the order of

2−Q
[
i(j)/ log(i(j))

]S(j)/Q

,

which grows super-polynomially in i(j) because S(j) → ∞, and this contradicts
(3.9) since i(j) → ∞. Hence S(j) must be uniformly bounded. This completes the
proof of Lemma 3.2. �

Lemma 3.2 implies that Theorem 3.1 follows so long as we can construct the
aforementioned map Φ : Γ → Mj,B(S), so that (1) the cardinality of each pre-
image of Φ is bounded solely in terms of the topology of S, and (2) there exists
γ ∈ Γ such that for any γ′ ∈ Γ,

iG(Φ(γ),Φ(γ′)) ≺ k.

Thus, our goal is to associate a B-marking to each element of our connected
k-system Γ. As in the proof of Lemma 2.1, using a hyperbolic metric we can realize
Γ in such a way so that there are no triple points.

Given γ ∈ Γ, we will build a B-marking by starting with γ and adding additional
edges that are subarcs of other elements in Γ. To start, choose some γ′ ∈ Γ such
that i(γ, γ′) �= 0. Then there exists a subarc e of γ′ with endpoints on γ; then
extend γ to the graph γ ∪ e. As we are assuming that elements of Γ are in pairwise
minimal position, no complementary component of γ∪e is a bigon. Now, we simply
iterate: extend γ ∪ e to a larger graph by adding an edge e′ associated to a subarc
of another element of Γ intersecting γ ∪ e. At each stage, e′ is chosen so that the
absolute value of the Euler characteristic of the subsurface filled by the extended
graph grows monotonically. Moreover, the endpoints of e′ occur at the interior of
pre-existing edges and not at vertices, since Γ has no triple points.

Thus, after at most |χ(S)| iterations, we obtain a graph Φ(γ), built from γ
and from arcs of elements in Γ, that fills S. At each stage, the number of edges
increases by at most 3: one new edge is added, and at most two previous edges are
subdivided into two edges (or perhaps one pre-existing edge has been subdivided
into three edges). As we have set B to be larger than 4|χ(S)|, Φ(γ) is a B-marking.
Furthermore, given γ, γ′ ∈ Γ it follows that

iG(Φ(γ),Φ(γ′)) ≺ k,

since each edge of both graphs is a subarc of some element of Γ, and therefore
any edge of Φ(γ) can intersect an edge of Φ(γ′) at most k times. Thus the bound
follows from the fact that both graphs are B-markings and have at most B edges
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each by definition. Finally, we note that for each γ ∈ Γ, γ is an embedded cycle in
the graph Φ(γ); that is, Φ(γ) contains a graph-path homotopic to γ which does not
traverse any edge more than once. The number of such cycles is bounded above
solely in terms of the number of edges of Φ(γ), and therefore the cardinality of any
pre-image Φ−1(γ) is bounded above solely in terms of B. This completes the proof
of Theorem 3.1.

4. Intersections of links

In this section, we prove uniform bounds on the size of the intersection of k-links
for a pair of filling curves α, β:

Theorem 4.1. There exists a function rS(k) depending only on the topology of S,
which grows at most quasi-polynomially and which satisfies the following. Let α, β
be simple closed curves on S which fill S, and let Lk(α) denote the set of all vertices
in Ck(S) that are distance 1 from α. Then |Lk(α) ∩ Lk(β)| ≤ rS(k).

We will actually prove Theorem 4.1 when α, β are each simplices in AC(S). That
is, both α and β are curve and arc systems, each consisting of a finite collection of
curves and arcs that are pairwise disjoint, and so that any essential simple closed
curve has positive geometric intersection number with either α or β.

The strategy of the proof is as follows: first we reduce to the case where the
intersection number i(α, β) is bounded above by a quasi-polynomial function of k.
To do this, we use the technology of hierarchies to argue that if i(α, β) is very large,
there must exist some subsurface Y of S on which a definite number of intersections
between α and β accumulate. It will then follow that no curve in Lk(α)∩Lk(β) can
intersect Y , and thus we may restrict our attention to its complement. Then using
Choi-Rafi’s estimate for distance in the thick part of Teichmüller space in terms
of intersection number ([23]), we find a hyperbolic surface σ(α, β) on which both
α, β have bounded length (quasi-polynomial in k) representatives. It follows that
the number of curves in Lk(α) ∩ Lk(β) is comparable to the number of geodesics
on σ with length bounded above by some explicit quasi-polynomial function of k.
Finally we appeal to a result of Rivin ([25]) estimating the number of such bounded
length curves on σ.

Proof.

Step 1 (Bound i(α, β)). Suppose there exists a non-annular essential subsurface
Y ⊆ S such that

dY (α, β) > 4 log(k) + 10.

Then if γ ∈ Lk(α) ∩ Lk(β), γ must be disjoint from Y or homotopic into the
boundary of Y . Indeed, if γ projected to Y , then ψY (γ) would intersect both
ψY (α), ψY (β) at most 4k + 4 times by (2.3), and thus by inequality (2.2),

dY (γ, α), dY (γ, β) ≤ 2 log(4k + 4) + 2,

and we obtain a contradiction by applying the triangle inequality in C(Y ). Similarly,
if there exists an annulus A with dA(α, β) > 4k + 4, no element of the intersection
Lk(α) ∩ Lk(β) can cross A.

If such a non-annular subsurface Y or an annulus A exists, then consider its
complement S \ Y or S \ A. In either case, denote this complement by S′. Then
any curve in Lk(α)∩Lk(β) must be homotopic into S′ (or boundary parallel in S′).
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Note that this argument can be repeated indefinitely, since πY (α), πY (β) are
curve and arc systems on Y which necessarily fill Y . Indeed, there cannot exist
an essential simple closed curve δ on Y with i(δ, πY (α)), i(δ, πY (β)) = 0, or else δ
would be disjoint from α∪ β on S, and this contradicts the assumption that α and
β fill the full surface.

Thus, we can apply the above argument iteratively to remove any non-annular
subsurfaces Y with dY (α, β) > 4 log(k) + 10 or annuli A so that dA(α, β) > 4k+4.
Concretely, let R denote the collection of all such subsurfaces. We apply the above
analysis to the subsurfaces in R, removing them one by one until we obtain a
subsurface S′ such that

(1) dY (πS′(α), πS′(β)) ≤ 4 log(k)+ 10 for any essential non-annular subsurface
Y ⊆ S′, and dA(πS′(α), πS′(β)) ≤ 4k+4 for any essential annular subsurface
of S′.

(2) Since the absolute value of the Euler characteristic decreases at each stage,
the number of curves in Lk(α)∩Lk(β) which are boundary parallel at some
stage of the process is coarsely at most |χ(S)|, hence:

(3) all but coarsely at most |χ(S)| of the curves γ ∈ Lk(α) ∩ Lk(β) satisfy
max(i(γ, πS′(α)), i(γ, πS′(β))) ≤ k.

We note that S′ may be disconnected, and it may also be empty. If indeed S′ is
empty, this implies that Lk(α)∩Lk(β) is coarsely at most |χ(S)|, and in particular
it is bounded independently of k and we are done.

Henceforth, we replace S with S′ and α (resp. β) with its projection πS′(α)
(resp. πS′(β)).

Now, using (1) above, we will bound the intersection number i(α, β), and this
bound will later be used to bound Lk(α) ∩ Lk(β), which by (2) and (3) above will
imply the desired bound for the original surface S and filling pair α, β.

To do this, we first augment α, β to B-markings μα, μβ such that

i(μα, μβ) � i(α, β).

The marking μα is obtained by projecting β to the complement S \ α. Concretely,
μα is the B-marking obtained by taking the union of α with a maximal collection of
pairwise non-homotopic arcs of β∩(S\α), interpreted as a graph on S, and similarly
for μβ . Then by choosing a sufficiently high cut-off as in the proof of Lemma 3.2,
the Choi-Rafi formula relating intersection number to subsurface projections states
that

(4.1) log(iG(μα, μβ)) ≺
∑
Y⊆S

[[dY (μα, μβ)]]P +
∑
A⊂S

log([[dA(μα, μβ)]]P ).

Then the assumption that there are no large projections, together with the prop-
erties of hierarchy paths recorded in section 2, will allow us to bound the right-hand
side from above in terms of k. Indeed, a hierarchy organizes the subsurfaces which
support large projections between μα, μβ into a weighted tree, which is a based,
directed tree whose vertices are labeled by natural numbers. The size of a weighted
tree is the sum, over each vertex, of the weight of that vertex. Adjacency in this
tree will be encoded by forward subordinacy.

Concretely, by property (4) of hierarchies, every subsurface in the hierarchy is
forward subordinate to the main geodesic. Thus, we will interpret the main geodesic
g as being the base vertex v of a weighted tree. By property (3), the number of
subsurfaces that are directly forward subordinate to g is at most |g| + 4; thus, we
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assign v a weight of |g|+4, which will also be an upper bound for the valence of v.
We then add vertices for each of the subsurfaces directly forward subordinate to g
and connect each to v by an edge directed away from v. The weight of each of these
vertices will be equal to the number of subsurfaces directly forward subordinate to
it, and we iterate in this fashion.

For each vertex x in this weighted tree, let Y (x) denote the associated subsur-
face. Then by property (3) of hierarchies, if z is adjacent to x by an edge directed
towards z, |χ(Y (z))| < |χ(Y (x))|. It follows that the distance from v to any vertex
associated to an annulus is at most |χ(S)|. Therefore, the size of the weighted tree
is bounded above by an upper bound on the size of any geodesic in the hierar-
chy, raised to the power |χ(S)|. By construction, the size of the tree is an upper
bound on the size of the hierarchy, and by property (2) of hierarchies, each geodesic
that appears has length coarsely equal to the projection distance of μα, μβ to that
subsurface. Thus, the weight of each vertex corresponding to a non-annular sub-
surface is coarsely bounded above by log(k), and the weight of each annular vertex
is coarsely at most k. Then by choosing the cut-off to be sufficiently large as in
the proof of Lemma 3.2, every summand appearing on the right-hand side of (4.1)
must appear in the hierarchy, and thus also as a vertex in the weighted tree. Thus,
the right-hand side of (4.1) is coarsely at most

[log(k)]f(S),

where

f(S) � |χ(S)|.
Thus, we have shown the existence of some constant U so that

log(iG(μα, μβ)) ≤ U · [log(k)]f(S) + U,

and exponentiating both sides of this yields

iG(μα, μβ) ≤ 2U·[log(k)]f(S)+U = U ′ · 2[log(k)]U·f(S)

=: w(k),

which is quasi-polynomial in k.

Step 2. Find the hyperbolic surface σ(α, β). We note that there is ε > 0 and N > 0,
each depending only on S, so that each x ∈ Tε(S) admits a B-marking of length at
most N , and every B-marking has length at most N at some point in Tε(S) (see
page 5 of [23]). Let σ(α) (resp. σ(β)) denote a hyperbolic surface in the ε-thick
part so that μα (resp. μβ) has length at most N on σ(α) (resp. σ(β)).

Thus σ(α), σ(β) are both finite area complete hyperbolic surfaces of the same
topological type, potentially disconnected and with parabolic cusps but without
boundary. In the case that S′ is disconnected (and therefore σ(α), σ(β) are also
disconnected), we work with each connected component separately, and so hence-
forth we assume that S′ is connected. As there can only be coarsely at most |χ(S)|
components, obtaining the desired bound for each component and then adding them
all together suffices. Then the Choi-Rafi estimate (2.4), together with the bound
obtained in the previous subsection, implies that

(4.2) log(w(k)) � dT (σ(α), σ(β)),

where we emphasize that the coarse constants in the above inequality depend only
on S, since our choice of ε depends only on S.
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Remark 4.2. We remark here that (4.2) is part of Theorem 2.2 of [23] and that
this estimates the Teichmüller distance between points x, y in the thick part in
terms of their shortest markings, not simply markings which are relatively short.
However, as mentioned in the proof of Corollary D in [23], the result applies if one
uses relatively short markings. For completeness, we include an argument for this
here:

Let N > 0 be larger than the minimal length (taken over T (S)) of any complete
clean marking. Fix a complete clean marking μ, and let T (μ,N) ⊂ T (S) be the
set of all points on which μ has length at most N . We first note that there exists
δ > 0 depending only on N and S so that T (μ,N) ⊂ Tδ(S). Indeed, since μ cuts
up the surface into simply-connected and once punctured regions, for any surface
on which there exists a very short essential simple closed curve, μ must be long by
the collar lemma. Then Theorem B of [23] applies, which states that Teichmüller
and Lipschitz distances are comparable in Tδ(S), where the comparability constants
depend only on S.

We claim that T (μ,N) has bounded diameter in the Teichmüller metric, in-
dependent of μ. Using Theorem B of [23], to prove this it suffices to show that
diam(T (μ,N)) is bounded in the Lipschitz metric, and for this one must show
that �y(α)/�z(α) is uniformly bounded over all essential simple closed curves α and
any y, z ∈ T (μ,N). This follows from the fact that for any y ∈ T (μ,N), �y(α)
is coarsely equal to i(α, μ) (see Proposition 3.5 of [19]). Thus diam(T (μ,N)) is
bounded in the Teichmüller metric, as desired.

Then as mentioned in the proof of Corollary D of [23] there exists a point xμ ∈
T (S) so that μ is a short marking on xμ; note that xμ is necessarily contained
in T (μ,N). It follows that (4.2) applies when stated in terms of relatively short
complete clean markings (for instance, at most length N), after perhaps accounting
for the additional additive error 2 · diam(T (μ,N)).

In particular, (4.2) implies that α admits a representative on σ(β) whose length
is coarsely at most w(k). This follows, for instance, by Wolpert’s inequality [30],
which states that for any essential simple closed curve γ and any points x, y ∈ T (S),

�x(γ)

�y(γ)
≤ edT (S)(x,y).

Thus the desired bound follows from the fact that α has length at most N on
σ(α), and N depends only on ε and S. Since the length of β is bounded on σ(β) in
terms of only the topology of the surface S, it follows that α∪β has length bounded
coarsely from above by w(k) on σ(β). We set σ(α, β) := σ(β).

Step 3 (Bounding the number of short curves on σ(α, β)). Thus the geodesic rep-
resentatives for α and β (which by abuse of notation we also refer to as α and β)
decompose σ(α, β) into hyperbolic polygons P1, . . . , PN and possibly also a finite
number of once-punctured regions with piecewise geodesic boundaries, such that:

(1) for each i = 1, . . . , N , each side of Pi has hyperbolic length (coarsely) at
most w(k);

(2) for each i = 1, . . . , N , Pi has a uniformly bounded number of sides (in terms
only of the topology of S).

Property (1) follows from the previous subsection. Property (2) follows from (4.3)
below, and in particular it is true for any filling pair on S, regardless of intersection
number. Indeed, let N denote the number of simply-connected components of
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S \ (α ∪ β). Note that when interpreted as a graph on the surface, α ∪ β is 4-
valent, and therefore it has twice as many edges as vertices. Since the vertices are
in correspondence with the intersections between α and β, one has that χ(S) =
i(α, β)− 2 · i(α, β) +N

(4.3) ⇒ χ(S) = N − i(α, β).

Since each of these regions has at least 4 sides, it follows that no region can have
more than 4|χ(S)|+ 5 sides. Note that the same bound applies for the number of
sides of any of the once-punctured complementary regions. Indeed, if there exists a
once-punctured region R with at least 4 sides, then α, β will be in minimal position
on the surface S̃ obtained by filling in that puncture as this does not create any
bigons. Thus R cannot have more than 4|χ(S)| + 5 sides by applying the same

argument on S̃.

Therefore, each Pi has diameter coarsely bounded above by w(k), and this implies
that the length of an arc of any geodesic contained within one of the Pi’s has
length coarsely at most w(k). Moreover, although the diameter of a once-punctured
region is infinite, the same argument implies that the length of an arc of a geodesic
contained within one of the once-punctured complementary regions is also coarsely
at most w(k). Hence if γ ∈ Lk(α) ∩ Lk(β), the geodesic representative for γ on
σ(α, β) has hyperbolic length at most Z · (k · w(k)) + Z, for some constant Z > 0.
That is, if Nσ(Z · (k · w(k)) + Z) denotes the collection of simple closed geodesics
on σ(α, β) of length at most Z · (k · w(k)) + Z, then we have

Lk(α) ∩ Lk(β) ⊆ Nσ(Z · (k · w(k)) + Z).

Rivin ([25]) has shown that there exists some constant V = V (σ) such that for any
L,

Nσ(L) ≤ V · L| dim(T (S))| + V.

The constant V necessarily diverges as injectivity radius decays to 0; however we
have chosen σ(α, β) to be uniformly thick, independent of the choice of filling pair
α, β, and in any thick part, V is uniformly bounded. This follows from the compact-
ness of the (any) thick part of Moduli space. This completes the proof of Theorem
4.1. �

4.1. Unit-square tiled surfaces. We conclude with a brief discussion of Corollary
4.3 and its proof.

Let S be a closed surface. A unit-square tiling of S is a surface S homeomorphic
to S obtained by gluing copies of the unit square in C together, so that

(1) vertical edges glue to vertical edges, and similarly horizontal edges glue to
horizontal edges;

(2) each vertex is adjacent to at least 4 squares after the gluing.

In particular, we do not require that a left-hand vertical edge glue to a right-
hand vertical edge or that a top horizontal edge glue to a bottom one. We also
call S a unit-square tiled surface. A unit-square tiled surface admits a metric that
is induced by identifying each square with the standard unit square in C; this is
a Euclidean metric away from finitely many singular points which correspond to
locations around which more than 4 squares are glued.

In the special case that top edges glue to bottom edges and left edges glue to
right ones, the resulting surface is a branched cover of the torus and is conformally
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equivalent to a so-called origami, a type of translation surface whose SL(2,R) orbit
has important dynamical and algebro-geometric properties ([6], [27]).

Let X (S) denote the set of all unit-square tilings of S, and for each S ∈ X (S),
let NS(L) denote the number of homotopy classes of simple closed geodesics on S
of length at most L. We prove:

Corollary 4.3. There exists a function PS which grows at most quasi-polynomially,
such that

sup {NS(L) : S ∈ X (S)} ≤ PS(L).

Figure 1. A genus 2 singular flat surface, consisting of two flat
tori glued together via a small slit on the interior of each torus.
The left hand side of the left slit is glued to the right hand side
of the right slit. The area of the small torus is ε and the area of
the larger is 1− ε. For ε very small, there will be many homotopy
classes of simple closed curves with representatives on the smaller
torus, all with short lengths.

Remark 4.4. That there exists a polynomial upper bound of degree dim(T (S))
for NS(L), for a fixed unit-square tiled surface S, follows from work of Rivin [25]
and also Mirzakhani [19]. However, this does not necessarily imply a uniform
quasi-polynomial bound over all X (S). Indeed, given a fixed hyperbolic metric σ
on S, the number Nσ(L) of simple closed geodesics of length ≤ L also satisfies
a polynomial upper bound of degree dim(T (S)) (again by [25] and [19]), but a
uniform upper bound for Nσ(L), taken over all hyperbolic metrics σ, necessarily
grows exponentially in L (see for instance inequality (3.14) of Proposition 3.6 of
[19]). There is also a polynomial upper bound for the number of (homotopy classes
of) simple closed geodesics of length ≤ L for any fixed unit-area singular flat metric
on S. However there can be no uniform bound (subexponential or otherwise) over
all unit-area singular flat metrics on S, as Figure 1 demonstrates.

We also highlight that in both the hyperbolic and unit-area flat setting, all of
the metrics we consider have a fixed bounded area, and this is not the case for
X (S). If we were to scale down the surfaces in X (S) so that each has unit area,
we could expect any result like Corollary 4.3 to hold. It follows that the only real
obstruction to Corollary 4.3 for unit-area flat surfaces is the presence of arbitrarily
small squares. Finally, we remark that we are using the simple closed curves in
an essential way: for any surface in S, the number of homotopy classes of closed
curves below a certain length L grows exponentially in L.

Proof of Corollary 4.3. Given S ∈ X (S), consider its vertical and horizontal curves
v and h: v (resp. h) is the multi-curve obtained by concatenating all vertical (resp.
horizontal) midsegments of squares. The requirement that no vertical edges glue to
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horizontal edges guarantees that v and h are both multi-curves (potentially with
many parallel components) and are distinct from each other.

If α is a minimum length representative of a simple closed homotopy class on S,
then at the cost of increasing length by a factor of at most

√
2, we can homotope

α so that it lies on the 1-skeleton of S. Therefore the length of α is coarsely equal
to the number of times it intersects both v and h. We can assume that any two
components of v (resp. h) are not homotopic to each other, since deleting parallel
components only reduces the intersection number with other curves. Hence NS(L)
is bounded above by

|L�
√
2L
(v) ∩ L�

√
2L
(h)|,

and thus the corollary follows by applying Theorem 4.1. �
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